Erregistro soila

dc.rights.licenseAttribution-NonCommercial-ShareAlike 4.0 International*
dc.contributor.authorBarrenechea, Maitane
dc.contributor.authorAlberdi Aramendi, Ane
dc.contributor.otherVarela Leniz, Irene
dc.contributor.otherChinellato, Eris
dc.date.accessioned2022-10-28T15:12:39Z
dc.date.available2022-10-28T15:12:39Z
dc.date.issued2018
dc.identifier.isbn9788409062539en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=149013en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5781
dc.description.abstractWhereas understanding human reaction to touch is of great interest in many medical applications, it is still a very unknown field. This research aims to clarify the nature of the relation between endogenous and exogenous attention by analysing electroencephalografic (EEG) data regarding human touch. To this end, data collected from twelve subjects under an experiment based on a variation of the Posner’s cue-target paradigm has been used. After pre-processing, several multi-class classification models based on state-of-the-art machine learning algorithms have been implemented and their accuracy in detecting different experimental conditions have been evaluated. A temporal analysis has also been performed to select the most representative time points. Results showed that although the physical stimuli was identical across conditions, different types of attentional scenarios were classified above chance. Further, the hemisphere contralateral and ipsilateral to the attended side contributed differently, across time, to the accuracy of classification.en
dc.language.isoengen
dc.publisherVISLABen
dc.rights© 2018 CASEIB 2018en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleUnderstanding human response to tactile stimuli: A Machine Learning approachen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceXXXVI Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB). Libro de Actas.en
local.description.peerreviewedtrueen
local.description.publicationfirstpage267en
local.description.publicationlastpage270en
local.contributor.otherinstitutionhttps://ror.org/01rv4p989en
local.source.detailsCiudad Real, 21-23 noviembre. Ediciones VISILAB, 2018en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

Attribution-NonCommercial-ShareAlike 4.0 International
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: Attribution-NonCommercial-ShareAlike 4.0 International