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Abstract 

Whereas understanding human reaction to touch is of great 

interest in many medical applications, it is still a very unknown 

field. This research aims to clarify the nature of the relation 

between endogenous and exogenous attention by analysing 

electroencephalografic (EEG) data regarding human touch. To 

this end, data collected from twelve subjects under an experiment 

based on a variation of the Posner’s cue-target paradigm has 

been used. After pre-processing, several multi-class classification 

models based on state-of-the-art machine learning algorithms 

have been implemented and their accuracy in detecting different 

experimental conditions have been evaluated. A temporal 

analysis has also been performed to select the most representative 

time points. Results showed that although the physical stimuli was 

identical across conditions, different types of attentional 

scenarios were classified above chance. Further, the hemisphere 

contralateral and ipsilateral to the attended side contributed 

differently, across time, to the accuracy of classification. 

1. Introduction 

In everyday life, humans can perceive the surrounding 

world through what is known as the five senses, 

responsible for connecting the environment in which we 

operate with our nervous system. Neural activities 

involved in these processes play an important role in the 

interpretation and responses to those stimuli. 

Neuropsychology science is essential to understand how 

our brain acts before these stimuli. Due to the growing 

volume and variety of available data in medicine, as well 

as to the cheaper and more powerful computational 

processing and affordable data storage, the acquisition of 

new knowledge on the subject is becoming increasingly 

easier.  

Regarding the different types of stimuli and attentional 

scenarios to which a subject can be subjected, the brain 

response varies. Posner’s paradigm has been widely used 

in neuropsychological researches to analyse these 

differences in brain processing at different states of 

attention. This paradigm is based on the presentation of a 

unilateral cue followed by a target at the same or opposite 

location. The cue can predict targets at the same 

(endogenous predictive task) and opposite location 

(endogenous counter-predictive task), or it can be a non-

informative cue (exogenous task) (for further information 

see [1]).  

Our goal in this paper is to analyze some characteristic 

wave sequences of the EEG tracing, called alpha-band 

oscillations, in this specific case caused by the attention to 

tactile stimuli, to detect patterns related to the type of task 

(endogenous predictive, endogenous counter-predictive or 

exogenous) being performed. Therefore, a tactile-version 

of the Posner’s paradigm has been used. These findings can 

result in the determination of the neural activation most 

related with the different attentional scenarios, being useful 

in medical diagnosis or in prosthetics, such as, in the 

development of intelligent prostheses.  

For this end, Machine Learning (ML)-based models can be 

used. ML is a subdiscipline of artificial intelligence (AI) 

aimed at building algorithms that are able to learn and/or 

adapt their structure based on a set of observed data (i.e., 

example data or past experience) [2]. ML techniques offer 

an approach for the analysis of high-dimensional and 

multimodal biomedical data. 

Previous research has demonstrated that the oscillation 

components registered after a tactile stimulus show 

desynchronization and synchronization depending on the 

type of task. Shifting attention in space has shown to 

modulate alpha power in vision [3] and touch [4].  

In addition, when investigating attentional shifts numerous 

studies have emphasized the importance of the brain 

lateralization function and have typically compared 

activations for the ipsilateral (same side) and contralateral 

(opposite side) hemispheres to the stimulus applied. Since 

brain anatomy and function differ for the left and right 

hemispheres, some cognitive functions tend to be 

dominated by one side or the other, so that it is said that the 

brain function is lateralized.  

There is still much work to do towards the understanding 

of human response to tactile stimuli. Diverse statistical 

analyses have been carried out to try to find critical 

activation components, although, there has been no attempt 

to apply ML techniques to identify which are the most 

relevant time intervals in alpha oscillations waveform yet. 

Moreover, the importance of the brain lateralization 

function and whether the positivity of the ipsilateral zone 

or the negativity of the contralateral zone is more related to 

attentional tasks is still unknown. 
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This paper aims at filling this research gap. The main 

contributions can be summarised as follows. We analyse 

the possibility of detecting the type of attention task by 

applying ML techniques on features obtained from EEG 

activation signals, as well as identifying the features that 

contribute the most to this detection. In addition, we 

analyse the differences regarding the laterality of the brain 

and finally, we analyse the agreement of these results with 

the raw activation signals. 

 

2. Methods  

2.1. Data collection 

The data used in this study contain raw EEG wavelets from 

twelve participants (10 right-handed, 7 male and 5 female, 

aged M=25.6 years (range: 20-37 years)) who were 

submitted to three different types of tasks: exogenous, 

endogenous predictive and endogenous counter-predictive 

[1]. Each task involved the presentation of a tactile cue, 

followed by an inter-stimulus interval and the target. The 

participants were asked to respond as quickly as possible 

to the targets. EEG data were recorded using 32 electrodes 

arranged on the scalp of the subjects according to the 10-

20 system at a sampling rate of 500 Hz. After initial pre-

processing, we had available 431 endogenous-predictive, 

394 endogenous counter-predictive and 258 trials for the 

exogenous task. For more information on the data 

collection experiment and preprocessing steps, see [1].  

2.2. Preprocessing  

First, we discarded EEGs containing artifacts and trials 

with behavioural errors. Moreover, only data collected by 

electrodes close to and around the somatosensory cortex 

(C3/4, P3/4 and F3/4) where kept, as these were the 

channels where tactile activations are found and attention 

effects on tactile processing are expected [1]. Then, we 

removed noise by smoothing the signals and we selected 

the time interval and frequency bands of interest. The 

selected time interval was 800 ms long, starting 50 ms 

before cue until target onset. This allowed us to get rid of 

the data not belonging to the cue-target interval. Since it is 

considered that dominant oscillations in human brain are 

present at the alpha band [5], we extracted these 

frequencies for further analysis by means of a bandpass 

filter. Next, we performed a downsampling of the raw EEG 

signals to a sampling period of 10 ms, which considerably 

reduced the required processing time. Finally, we 

computed the average of the signals by using a non-

overlapping sliding time-window (TW) of 100 ms. This 

TW-length was selected empirically as the best value to 

significantly reduce the size of the data while keeping the 

minimum necessary detail to identify the most 

characteristic areas of the cue-target interval.  

After the pre-processing step we had available a dataset of 

864 instances (12 subjects x 3 tasks x 2 laterality conditions 

x attended/unattended cues x 6 electrodes) and 80 features 

describing the average EEG sequence values per TW, as 

well as the corresponding labels indicating the conditions 

of trial.  

2.3. Data analysis 

2.3.1 General activity classification by task 

As previously stated, this analysis intended to find a pattern 

that allows grouping neural activity by tasks: exogenous, 

endogenous predictive and endogenous counter-predictive. 

First, we split our pre-processed data into training and test 

sets (90% vs. 10%). Then, we built classification models 

for the training dataset using Random Forest (RF), Logistic 

Regression (LR) and Bernoulli (BNB) and Gaussian 

(GNB) Naïve Bayes algorithms available in scikit-learn 

toolkit for Python. 

After that, we made predictions in the test dataset using our 

models and computed the accuracy of the models. Being 

our task a three-class (one class per task type) classification 

problem, the probability of minimum success for a random 

classifier would be 1/3. We are thus looking to achieve 

classification rates considerably above the chance value. 

2.3.2 Selection of most representative time points  

To estimate the relevance of each time-period to the 

learning stage, we computed the importance of the 

temporal features.  

To do so, we built a classification model using RF 

algorithm and analysed the feature importance parameter 

given by the algorithm. For this process, we did not divide 

the cue-target interval into TWs as before, because 

averaging does not enable seeing features’ contribution 

individually. Nevertheless, the consideration of individual 

features made data to be noisy. We smoothed the signal to 

capture important patterns while leaving out noise. Due to 

its simplicity and rapidity, the moving average filter has 

been used (k=8) for this purpose. 

2.3.3 Consideration of the laterality of the brain 

To analyse the importance of the brain laterality function 

and its influence in diverse sensorial modalities, the 

classification of the brain activations by task was 

performed considering the differences on signals 

depending on laterality. For this purpose, we separated the 

activations according to the laterality parameter, which 

caused the number of available features per trial to be 

reduced by half. Each trial only contained the electrodes 

belonging to a single hemisphere, which depended on the 

side where the cue appeared. We then repeated the steps 

2.3.1 and 2.3.2.  

2.3.4 Contrasting the results with the raw EEG 

signals 

Finally, we compared accuracy rates to feedback the 

recorded raw activation patterns. These results aim to 

provide a clearer view of the characteristics in terms of 

amplitude changes in the different lobes and laterality 

conditions. 

For this purpose, we distinguished activations by brain 

areas (central, frontal or parietal) and laterality, and we 

calculated the average value of EEG signal amplitudes for 

each case and per TW in the cue-target interval. This also 
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allowed to get rid of the noise and to visualize general and 

repetitive patterns throughout trials. 

We also compared raw activations with classification 

accuracy results by emphasizing in the lateralization factor, 

i.e. the normalized ipsilateral-minus-contralateral 

difference [6]. To do so, we first computed the 

lateralization factors per TW and then, we averaged the 

indexes (LI) differentiating central, parietal and frontal 

areas.    

 

3. Results 

Figure 1 represents the accuracy values obtained for all 

classifiers per TW. It shows a clear over chance accuracy, 

as all results overcome that of a random classifier. A bell-

shaped curve can be distinguished with a peak on the 

interval 300 - 400 ms after cue.  

 

 

Figure 1. Representation of accuracy values obtained for the 

general classification models. x axis represents the TWs in ms. y 

axis represents the accuracy coefficient. 

Figure 2 shows the contributions of the oscillation waves 

coming from different electrodes in the learning model.  

 

Figure 2. Representation of the importance of each component of 

the activation wave measured by each electrode. x axis represents 

the cue-target interval in ms. y axis represents the contribution of 

each feature in the ML model. 

 

A pronounced peak around 300 ms time interval stands out 

for the case of the left-side frontal lobe (F3) whereas the 

signals recorded in the right area of that same lobe (F4) 

seem slightly higher than others (yet constant). 

The importance to the activations registered in the left 

central zone (C3), follows the line of the frontal lobe, 

especially in the left hemisphere, although its contribution 

is smaller on the 300 ms time interval. However, after that 

instant, importance registered in the central area is greater 

than that in frontal zone.  

Note also that central (C4) and parietal (P4) lobes of the 

right hemisphere do not seem to contribute much in the 

classification model. Nonetheless, the importance of the P4 

increases slightly at the end of the 300 ms time interval. 

Results in Figure 3 show that learning for the activations 

registered contralateral to the cue are higher than ipsilateral 

in a large part of the interval. However, in the last 200 ms, 

waves registered in ipsilateral areas get more relevance. 

Likewise, at the instant in which the 300 ms time interval 

is located, we obtained a high variability on the accuracy 

values for the ipsilateral activations, although the 

difference in the median accuracy value compared to the 

contralateral one is not significant. 

 

 

Figure 3. Representation of the accuracy values of the 

classification models according to the lateralization of the brain. 

x axis represents the TWs in ms. y axis represents the accuracy 

coefficient. 

 

 

Figure 4. Importance of activation components per electrode and 

laterality of the brain. x axis represents the cue-target interval in 

ms. y axis represents the contribution of each feature in the ML 

model. 

 

In Figure 4 a higher contralateral contribution can be 

distinguished, keeping it constant throughout the interval. 

The ipsilateral signals also show a peak around 300-350 ms 

after cue, posterior to the 300 ms time interval. The central 
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zone shows the lowest values among all, although the 

importance of the features increases slightly in the second 

half of the interval, with a small peak around the 150 - 200 

ms after cue. In parietal lobe the activations recorded in the 

area ipsilateral to the cue stand out, with a pronounced peak 

indicating a great contribution in the classification model 

around 200 ms after cue.  

Figure 5 indicates that highest amplitudes are registered in 

the parietal zone, especially in areas ipsilateral to the 

stimulus, remarking that differences between central and 

frontal signals are quite considerable. In the case of the 

signals recorded in the central lobe, even though activation 

is in general smaller, there are differences in laterality, with 

considerably higher values for the ipsilateral case. The 

signals recorded in the frontal area do not show significant 

differences.  

 

Figure 5. Average values of the activations per cortex lobe and 

laterality of the brain. x axis represents the cue-target interval in 

ms. y axis represents mean alpha oscillations in mv. 

It should also be noted that as the time increases greater 

amplitudes are observed, especially where the 300 ms time 

interval would be located. In any case, for activations 

registered in contralateral areas to the stimulus an 

enhancement in the negativity of the waves can be 

observed, with a decrease in amplitude. Nevertheless, this 

effect is minor compared to the increase observed in 

ipsilateral zones.  

As can be seen in Figure 6, the contralateral-minus-

ipsilateral differences are larger in some time periods than 

in others, especially from 150 to 450 ms after cue and for 

signals registered in central areas.  

 

Figure 6. Averages of the LIs of the trials regarding the cue-

target interval, per somatosensory cortex area. x axis represents 

the cue-target interval in ms. y axis represents the LI coefficient. 

4. Discussion and conclusions 

Results have shown that activation patterns are related to 

the conditions in which the tactile stimuli are applied. 

Consequently, EEG-based ML models have demonstrated 

to be able to distinguish between endogenous predictive, 

endogenous counter-predictive and exogenous tasks.  

It is also significant that our simple ML models were able 

to predict the experimental conditions only by using data 

referred to the attention period, before the main stimulus 

occurred. 

The temporal components most related to each type of 

attention are located around 300 ms after cue, suggesting 

that this time interval is the main component contributing 

to the prediction models. The importance of 140 ms time 

interval has been highlighted, after finding a great 

contribution in the learning process of signals registered in 

central contralateral areas over 150-200 ms.  

Comparing the accuracy rates obtained in the classification 

considering the brain’s laterality, we highlight the 

predominance of contralateral signals along almost cue-

target interval. Anyway, around 300 ms time interval, the 

signals recorded in ipsilateral areas would also determine 

the differences between activations according to the type 

of attention. In addition, the results obtained about 

laterality difference, have demonstrated that the brain 

function is also lateralized with respect to attention in 

touch, where the signals registered in central lobe and 

around 300 ms after stimulus stand out. 
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