Registro sencillo

dc.contributor.authorAyerdi, Jon
dc.contributor.authorArrieta, Aitor
dc.contributor.authorSagardui, Goiuria
dc.contributor.otherTerragni, Valerio
dc.contributor.otherTonella, Paolo
dc.contributor.otherArratibel, Maite
dc.date.accessioned2021-09-17T14:09:57Z
dc.date.available2021-09-17T14:09:57Z
dc.date.issued2021
dc.identifier.isbn978-1-4503-8562-6en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=164631en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5382
dc.description.abstractOne of the major challenges in the verification of complex industrial Cyber-Physical Systems is the difficulty of determining whether a particular system output or behaviour is correct or not, the socalled test oracle problem. Metamorphic testing alleviates the oracle problem by reasoning on the relations that are expected to hold among multiple executions of the system under test, which are known as Metamorphic Relations (MRs). However, the development of effective MRs is often challenging and requires the involvement of domain experts. In this paper, we present a case study aiming at automating this process. To this end,we implemented GAssertMRs, a tool to automatically generate MRs with genetic programming. We assess the cost-effectiveness of this tool in the context of an industrial case study from the elevation domain. Our experimental results show that in most cases GAssertMRs outperforms the other baselines, including manually generated MRs developed with the help of domain experts. We then describe the lessons learned from our experiments and we outline the future work for the adoption of this technique by industrial practitioners.en
dc.description.sponsorshipComisión Europeaes
dc.description.sponsorshipGobierno Vascoes
dc.language.isoengen
dc.publisherACMen
dc.rights© 2021 The authorsen
dc.subjectCyber Physical Systems CPSen
dc.subjectMetamorphic Testingen
dc.subjectQuality of Serviceen
dc.subjectoracle generationen
dc.subjectoracle improvementen
dc.subjectevolutionary algorithmen
dc.subjectgenetic programmingen
dc.subjectmutation testingen
dc.titleGenerating metamorphic relations for cyber-physical systems with genetic programming: an industrial case studyen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceProceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2021).en
local.contributor.groupIngeniería del software y sistemases
local.description.peerreviewedtrueen
local.description.publicationfirstpage1264en
local.description.publicationlastpage1274en
local.identifier.doihttps://doi.org/10.1145/3468264.3473920en
local.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/871319/EU/Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for Cyber-Physical Systems of Systems/ADEPTNESSen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2019-2021/IT1326-19/CAPV/Ingeniería de Software y Sistemas/en
local.contributor.otherinstitutionhttps://ror.org/03b94tp07es
local.contributor.otherinstitutionhttps://ror.org/03c4atk17es
local.contributor.otherinstitutionOrona S.Coop.es
local.source.detailsAtenas. 25-27 agosto. Pp. 1264–1274, 2021en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo