Título
Towards a probabilistic error correction approach for improved drone battery health assessmentOtras instituciones
IkerbasqueAlerion Technologies
Versión
Postprint
Derechos
© 2023 ESREL2023 OrganizersAcceso
Acceso embargadoVersión del editor
https://doi.org/10.3850/978-981-18-8071-1_P179-cdPublicado en
European Safety and Reliability Conference (ESREL) 33 : 2023 : Southampton. 3-7 September, 2023Editor
Research Publishing, SingaporePalabras clave
Health managementBatteries
Materia (Tesauro UNESCO)
Estadísticas sanitariasResumen
Health monitoring of remote critical infrastructure, such as offshore wind turbines, is complex and expensive.
For the offshore energy sector, the accessibility for on-site asset inspection is hamper ... [+]
Health monitoring of remote critical infrastructure, such as offshore wind turbines, is complex and expensive.
For the offshore energy sector, the accessibility for on-site asset inspection is hampered due to their harsh and
remote location. In this context, inspection drones are crucial assets. They can perform multiple tasks, which
are benefitial for the industry and society, including the improved reliability of critical and remote infrastructure.
However, the reliability and safety assurance of inspection drones is complex, as they are autonomous systems and
they require incorporating run-time operation and degradation knowledge. Focusing on the health assessment of
inspection drones, their battery is a key component, which is a single point of failure and determines the probability
of a successful operation. In this context, this paper presents a novel concept for inspection drone battery health
assessment through a probabilistic hybrid approach which combines physics-based battery discharge models with
data-driven error forecasting strategies. Results are validated with real data obtained through different offshore wind
inspection flights of drones. [-]
Financiador
Gobierno VascoGobierno Vasco
Gobierno Vasco
Programa
Elkartek 2022Ikertalde Convocatoria 2022-2023
Ikertalde Convocatoria 2022-2025
Número
KK-2022-00106IT1451-22
IT1676-22
URI de la ayuda
Sin informaciónSin información
Sin información
Proyecto
Mecatrónica ultraprecisa, fiable y coordinada para la industria 4.0 (MECAPRES)Teoría de la Señal y Comunicaciones. IKERTALDE 2022-2023
Grupo de sistemas inteligentes para sistemas industriales. IKERTALDE 2022-2025
Colecciones
- Congresos - Ingeniería [378]