dc.contributor.author | Azkue, Markel | |
dc.contributor.author | Oca, Laura | |
dc.contributor.author | IRAOLA, UNAI | |
dc.contributor.other | Lucu, M. | |
dc.contributor.other | Martínez Laserna, Egoitz | |
dc.date.accessioned | 2024-04-19T09:32:55Z | |
dc.date.available | 2024-04-19T09:32:55Z | |
dc.date.issued | 2022 | |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=170385 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6360 | |
dc.description.abstract | The development of State-of-Charge (SoC) algorithms for Li-ion batteries involves carrying out different laboratory tests with the money and time that this entails. Furthermore, such laboratory labours must typically be repeated for each new Li-ion cell reference. In order to minimise this issue, this work proposes a new approach for developing SoC algorithms, using a Recurrent Neural Network in combination with a Transfer Learning method. The latter technique will make possible to take advantage of the data generated for previously tested cell references and use it for the development of a SoC estimation algorithm for a new cell reference. This work provides a proof-of-concept for the proposed approach, using synthetic data generated from electrochemical models, which describes the behaviour of different Li-ion cell references. | en |
dc.language.iso | eng | en |
dc.rights | © 2022 The Authors | en |
dc.subject | Machine Learning | en |
dc.subject | Transfer Learning | en |
dc.subject | lithium-ion batteries | en |
dc.subject | State-of-Charge | en |
dc.subject | Artificial Neural Network | en |
dc.title | Li-ion Battery State-of-Charge estimation algorithm with CNN-LSTM and Transfer Learning using synthetic training data | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.source | 35th International Electric Vehicle Symposium & Exhibition | en |
local.contributor.group | Almacenamiento de energía | es |
local.description.peerreviewed | true | en |
local.contributor.otherinstitution | https://ror.org/03hp1m080 | es |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |