Registro sencillo

dc.contributor.authorLopetegi, Iker
dc.contributor.authorYeregui, Josu
dc.contributor.authorOca, Laura
dc.contributor.authorRojas Garcia, Clara
dc.contributor.authorIRAOLA, UNAI
dc.contributor.otherPlett, Gregory L.
dc.contributor.otherTrimboli, M. Scott
dc.contributor.otherMiguel, Eduardo
dc.date.accessioned2024-03-14T13:55:45Z
dc.date.available2024-03-14T13:55:45Z
dc.date.issued2023
dc.identifier.isbn979-8-3503-4445-5en
dc.identifier.issn2769-4186en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=174474en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6286
dc.description.abstractBattery aging models are essential tools when predicting how much a battery will age under certain working conditions, which is key when sizing a battery pack and controlling its operation. Nowadays, mostly empirical battery aging models are used, which require a high amount of long degradation experiments, and a lot of facilities are needed to perform these tests (cyclers, climate chambers … ). Due to the better predictability of physics-based models (PBMs), its use could reduce the costs of this process by decreasing the number of experiments. For that, an appropriate physics-based aging model must be selected. Hence, in this work we have compared two of the most used PBMs: the pseudo-two-dimensional (P2D) model and the single particle model with electrolyte dynamics (SPMe). We have analyzed their battery aging prediction accuracy as well as the computational cost. The results show that the SPMe can predict capacity fade with high accuracy compared to the P2D model, while the computational cost is reduced significantly. However, some gradients of internal mechanisms cannot be captured with the SPMe, which may generate differences when predicting internal aging variables.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2023 IEEEen
dc.subjectSolid modelingen
dc.subjectComputational modelingen
dc.subjectFittingen
dc.subjectagingen
dc.subjectPredictive modelen
dc.subjectBatteriesen
dc.subjectComputational efficiencyen
dc.titleLithium-ion Battery Aging Prediction with Electrochemical Models: P2D vs SPMeen
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceIEEE Vehicle Power and Propulsion Conference (VPPC)en
local.contributor.groupAlmacenamiento de energíaes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1109/VPPC60535.2023.10403316en
local.embargo.enddate2026-01-31
local.contributor.otherinstitutionhttps://ror.org/054spjc55en
local.contributor.otherinstitutionhttps://ror.org/03hp1m080eu
local.source.detailsMilan (Italia), 24-27 October, 2023en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo