Registro sencillo

dc.rights.licenseAttribution-4.0 International*
dc.contributor.authorAlcibar, Jokin
dc.contributor.authorAizpurua Unanue, Jose Ignacio
dc.contributor.authorZugasti, Ekhi
dc.date.accessioned2024-11-14T10:06:44Z
dc.date.available2024-11-14T10:06:44Z
dc.date.issued2024
dc.identifier.isbn978-1-936263-40-0en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=178488en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6774
dc.description.abstractBatteries are a key enabling technology for the decarbonization of transport and energy sectors. The safe and reliable operation of batteries is crucial for battery-powered systems. In this direction, the development of accurate and robust battery state-of-health prognostics models can unlock the potential of autonomous systems for complex, remote and reliable operations. The combination of Neural Networks, Bayesian modelling concepts and ensemble learning strategies, form a valuable prognostics framework to combine uncertainty in a robust and accurate manner. Accordingly, this paper introduces a Bayesian ensemble learning approach to predict the capacity depletion of lithium-ion batteries. The approach accurately predicts the capacity fade and quantifies the uncertainty associated with battery design and degradation processes. The proposed Bayesian ensemble methodology employs a stacking technique, integrating multiple Bayesian neural networks (BNNs) as base learners, which have been trained on data diversity. The proposed method has been validated using a battery aging dataset collected by the NASA Ames Prognostics Center of Excellence. Obtained results demonstrate the improved accuracy and robustness of the proposed probabilistic fusion approach with respect to (i) a single BNN model and (ii) a classical stacking strategy based on different BNNs.en
dc.language.isoengen
dc.publisherPHM Societyen
dc.rights© 2024 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBayesian optimizationen
dc.subjectUncertainty analysisen
dc.titleTowards a Probabilistic Fusion Approach for Robust Battery Prognosticsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.bibliographicCitation856en
dcterms.sourceEuropean Conference of the Prognostics and Health Management Societyen
local.contributor.groupAlmacenamiento de energíaes
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.description.publicationfirstpage868en
local.identifier.doihttps://doi.org/10.36001/phme.2024.v8i1.3981en
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72es
local.source.details8. Praga, 3-5 julio, 2024
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.fundingStreamElkartek 2023en
oaire.fundingStreamIkertalde Convocatoria 2022-2023en
oaire.fundingStreamIkertalde Convocatoria 2022-2025en
oaire.awardNumberKK-2023-00041en
oaire.awardNumberIT1451-22en
oaire.awardNumberIT1676-22en
oaire.awardTitleMateriales magnetoactivos avanzados para nuevos sistemas inteligentes (MMASINT)en
oaire.awardTitleTeoría de la Señal y Comunicaciones. IKERTALDE 2022-2023en
oaire.awardTitleGrupo de sistemas inteligentes para sistemas industriales. IKERTALDE 2022-2025en
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo

Attribution-4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-4.0 International