Erregistro soila

dc.contributor.authorAlcibar, Jokin
dc.contributor.authorAizpurua Unanue, Jose Ignacio
dc.contributor.authorZugasti, Ekhi
dc.contributor.otherAlonso Montes, Carmen
dc.contributor.otherDiez, Ibon
dc.date.accessioned2024-11-13T16:34:49Z
dc.date.available2024-11-13T16:34:49Z
dc.date.issued2023
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=178286en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6770
dc.description.abstractHealth monitoring of remote critical infrastructure, such as offshore wind turbines, is complex and expensive. For the offshore energy sector, the accessibility for on-site asset inspection is hampered due to their harsh and remote location. In this context, inspection drones are crucial assets. They can perform multiple tasks, which are benefitial for the industry and society, including the improved reliability of critical and remote infrastructure. However, the reliability and safety assurance of inspection drones is complex, as they are autonomous systems and they require incorporating run-time operation and degradation knowledge. Focusing on the health assessment of inspection drones, their battery is a key component, which is a single point of failure and determines the probability of a successful operation. In this context, this paper presents a novel concept for inspection drone battery health assessment through a probabilistic hybrid approach which combines physics-based battery discharge models with data-driven error forecasting strategies. Results are validated with real data obtained through different offshore wind inspection flights of drones.es
dc.language.isoengen
dc.publisherResearch Publishing, Singaporeen
dc.rights© 2023 ESREL2023 Organizersen
dc.subjectHealth managementen
dc.subjectBatteriesen
dc.titleTowards a probabilistic error correction approach for improved drone battery health assessmenten
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceEuropean Safety and Reliability Conference (ESREL)en
local.contributor.groupAlmacenamiento de energíaes
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.description.publicationfirstpage1826en
local.description.publicationlastpage1868en
local.identifier.doihttps://doi.org/10.3850/978-981-18-8071-1_P179-cden
local.embargo.enddate2143-01-01
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72es
local.contributor.otherinstitutionAlerion Technologiesen
local.source.details33 : 2023 : Southampton. 3-7 September, 2023
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept10264en
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086
oaire.fundingStreamElkartek 2022en
oaire.fundingStreamIkertalde Convocatoria 2022-2023en
oaire.fundingStreamIkertalde Convocatoria 2022-2025en
oaire.awardNumberKK-2022-00106en
oaire.awardNumberIT1451-22en
oaire.awardNumberIT1676-22en
oaire.awardTitleMecatrónica ultraprecisa, fiable y coordinada para la industria 4.0 (MECAPRES)en
oaire.awardTitleTeoría de la Señal y Comunicaciones. IKERTALDE 2022-2023en
oaire.awardTitleGrupo de sistemas inteligentes para sistemas industriales. IKERTALDE 2022-2025en
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen
dc.unesco.clasificacionhttp://skos.um.es/unesco6/3202en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila