Simple record

dc.rights.licenseAttribution 4.0 International*
dc.contributor.authorAldeiturriaga Olabarri, Naiara
dc.contributor.authorFraile, Itziar
dc.contributor.authorDominguez Romero, Erika
dc.contributor.authorZuriarrain Berasategui, Aitor
dc.contributor.authorARRAZOLA, PEDRO JOSE
dc.contributor.authorSoler Mallol, Daniel
dc.date.accessioned2024-10-23T11:46:43Z
dc.date.available2024-10-23T11:46:43Z
dc.date.issued2024
dc.identifier.issn2075-4701en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=177994en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6677
dc.description.abstractIn the present study, three extrusion-based Additive Manufacturing (AM) technologies were considered: Fused Filament Fabrication (FFF), Pellet Extrusion Process (PEP) and Atomic Diffusion Additive Manufacturing (ADAM). In order to compare these technologies, the same initial material was employed: a copper filament commercialized by Markforged® (Waltham, MA, USA). The copper filament was employed as received for ADAM and FFF technologies and shredded for PEP technology. Different printing parameters were studied for each technology (except for ADAM, which does not allow it) and the manufactured disc-shaped and tensile test parts were debindered and sintered under the same conditions. Part density, micrography and mechanical properties were analyzed. The density was observed to change with geometry, showing a relative density of around 95% for the tensile test parts through all the technologies but lower relative densities for the disc-shaped parts: around 90% for ADAM, between 85–88% for PEP and between 90–94% for optimized FFF printing parameters. The micrographies present big cavities between infill and contour for ADAM, whereas such cavities were not observed in either PEP or FFF parts. On the other hand, the parts made with PEP showed less and smaller porosity, but they had poor surface finishing, indicating that some printing parameters should be readjusted. Finally, the FFF parts had a better finishing but exhibited a non-uniform pore distribution. Concerning the mechanical properties, all the printed parts show similar properties.es
dc.language.isoengen
dc.rights© 2024 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCopperen
dc.subjectpellet additive manufacturingen
dc.subjectmetal extrusionen
dc.subjectADAMen
dc.titleEffect of material extrusion method on the microstructure and mechanical properties of copper partsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceMetalsen
local.contributor.groupMecanizado de alto rendimientoes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.3390/met14080941en
local.source.detailsVol. 14. N.8. N. art. 941
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept625en
oaire.funderNameGobierno Vascoen
oaire.funderNameCOPEFIen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierSin información
oaire.fundingStreamElkartek 2024en
oaire.fundingStreamSin informaciónen
oaire.awardNumberKK-2024-00102en
oaire.awardNumberBDI-2023-00029en
oaire.awardTitleTecnologías de gestión térmica para una propulsión inteligente y sostenible del avión cero emisiones (EKOPROP II)en
oaire.awardTitleSin informaciónen
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen
dc.unesco.clasificacionhttp://skos.um.es/unesco6/3313en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Simple record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International