Simple record

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.contributor.authorrodriguez, Iñigo
dc.contributor.authorSoriano Moreno, Denis
dc.contributor.authorCUESTA ZABALAJAUREGUI, MIKEL
dc.contributor.authorARRAZOLA, PEDRO JOSE
dc.contributor.otherPušavec, Franci
dc.date.accessioned2024-06-17T08:56:23Z
dc.date.available2024-06-17T08:56:23Z
dc.date.issued2024
dc.identifier.issn2212-8271en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=177542en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6533
dc.description.abstractTitanium alloy Ti6Al4V is of great importance to the aeronautical and medical sectors due to its mechanical properties such as a high strength-to-weight ratio and corrosion resistance. On the downside, machining Ti6Al4V can lead to accelerated tool wear and poor surface finish of the machined part due to its low heat dissipation capacity. Traditionally, oil and water based metalworking fluids (MWFs) have been used to overcome such issues. However, new regulations and eco-friendly manufacturing trends suggest that conventional MWFs should be minimised, as they are hazardous to the environment and workers’ health. Additionally, titanium prostheses contaminated with oil can cause severe integration problems on the patient. This article researches the feasibility of replacing conventional emulsions with sustainable liquid carbon dioxide (LCO2) cooling. For this purpose, an optimisation of the tool geometry (helix angle, clearance angle and cutting edge geometry) for LCO2 assisted milling of Ti6Al4V was carried out, taking into account parameters such as cutting forces, surface roughness and the microstructure of the machined surface. This research contributes to the development of environmentally friendly and work safe manufacturing processes that meet the challenges of machining Ti6Al4V for aerospace and medical applications.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2024 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSustainable machiningen
dc.subjectLCO2 coolingen
dc.subjectGeometry optimisationen
dc.subjectTi6Al4Ven
dc.subjectODS 12 Producción y consumo responsableses
dc.titleTool Geometry Optimisation for LCO2 Assisted Milling of Ti6Al4Ven
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceProcedia CIRPen
local.contributor.groupMecanizado de alto rendimientoes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.procir.2024.05.019en
local.contributor.otherinstitutionhttps://ror.org/05njb9z20en
local.source.detailsVol. 123. Pp. 95-100, 2024
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en
oaire.funderNameGobierno de Españaen
oaire.funderIdentifierhttps://ror.org/038jjxj40 / http://data.crossref.org/fundingdata/funder/10.13039/501100010198en
oaire.fundingStreamCDTI 2018en
oaire.awardNumberINNO-20182049en
oaire.awardTitleMecanizado Asistido por fluidos criogénicos (CRYOMACH)en
oaire.awardURISin informaciónen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Simple record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International