Simple record

dc.contributor.authorAyerdi, Jon
dc.contributor.authorArrieta, Aitor
dc.contributor.otherTerragni, Valerio
dc.contributor.otherJahangirova, Gunel
dc.contributor.otherTonella, Paolo
dc.date.accessioned2024-06-12T09:04:15Z
dc.date.available2024-06-12T09:04:15Z
dc.date.issued2024
dc.identifier.issn1939-3520en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=177531en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6527
dc.description.abstractMetamorphic testing is a popular approach that aims to alleviate the oracle problem in software testing. At the core of this approach are Metamorphic Relations (MRs), specifying properties that hold among multiple test inputs and corresponding outputs. Deriving MRs is mostly a manual activity, since their automated generation is a challenging and largely unexplored problem. This paper presents GenMorph , a technique to automatically generate MRs for Java methods that involve inputs and outputs that are boolean, numerical, or ordered sequences. GenMorph uses an evolutionary algorithm to search for effective test oracles, i.e., oracles that trigger no false alarms and expose software faults in the method under test. The proposed search algorithm is guided by two fitness functions that measure the number of false alarms and the number of missed faults for the generated MRs. Our results show that GenMorph generates effective MRs for 18 out of 23 methods (mutation score >20%). Furthermore, it can increase Randoop ’s fault detection capability in 7 out of 23 methods, and Evosuite ’s in 14 out of 23 methods. When compared with AUTOMR, a state-of-the-art MR generator, GenMorph also outperformed its fault detection capability in 9 out of 10 methods.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2024 IEEEen
dc.subjectMetamorphic Testingen
dc.subjectoracle improvementen
dc.subjectgenetic programmingen
dc.subjectmutation analysisen
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.titleGenMorph: Automatically Generating Metamorphic Relations via Genetic Programmingen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE Transactions on Software Engineeringen
local.contributor.groupIngeniería del software y sistemases
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1109/TSE.2024.3407840en
local.contributor.otherinstitutionhttps://ror.org/03b94tp07en
local.contributor.otherinstitutionhttps://ror.org/0220mzb33en
local.contributor.otherinstitutionhttps://ror.org/03c4atk17en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.fundingStreamElkartek 2022en
oaire.fundingStreamIkertalde Convocatoria 2022-2023en
oaire.awardNumberKK-2022/00119en
oaire.awardNumberIT1519-22en
oaire.awardTitleEdge Technologies for Industrial Distributed AI Applications (EGIA)en
oaire.awardTitleIngeniería de Software y Sistemasen
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record