Registro sencillo

dc.rights.licenseAttribution 4.0 International*
dc.contributor.authorAseginolaza, Unai
dc.contributor.authorBorge, Juan
dc.contributor.otherSobrino, Nahual
dc.contributor.otherSobrino, Gabriel
dc.contributor.otherJornet Somoza, Joaquim
dc.date.accessioned2024-05-23T09:09:55Z
dc.date.available2024-05-23T09:09:55Z
dc.date.issued2024
dc.identifier.issn1570-0755en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=177442en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6423
dc.description.abstractOne of the main important features of the noisy intermediate-scale quantum (NISQ) era is the correct evaluation and consideration of errors. In this paper, we analyse the main sources of errors in current (IBM) quantum computers and we present a useful tool (TED-qc) designed to facilitate the total error probability expected for any quantum circuit. We propose this total error probability as the best way to estimate a lower bound for the fidelity in the NISQ era, avoiding the necessity of comparing the quantum calculations with any classical one. In order to contrast the robustness of our tool we compute the total error probability that may occur in three different quantum models: 1) the Ising model, 2) the Quantum-Phase Estimation (QPE), and 3) the Grover’s algorithm. For each model, the main quantities of interest are computed and benchmarked against the reference simulator’s results as a function of the error probability for a representative and statistically significant sample size. The analysis is satisfactory in more than the of the cases. In addition, we study how error mitigation techniques are able to eliminate the noise induced during the measurement. These results have been calculated for the IBM quantum computers, but both the tool and the analysis can be easily extended to any other quantum computer.es
dc.language.isoengen
dc.publisherSpringer Natureen
dc.rights© 2024 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNISQen
dc.subjectquantum computingen
dc.subjecterror mitigationen
dc.subjectquantum circuiten
dc.titleError estimation in current noisy quantum computersen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceQuantum Information Processingen
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1007/s11128-024-04384-zen
local.contributor.otherinstitutionhttps://ror.org/02e24yw40en
local.contributor.otherinstitutionhttps://ror.org/000xsnr85en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en
oaire.funderNameDiputación Foral de Gipuzkoaen
oaire.funderIdentifierhttps://ror.org/05bvkb649 = http://data.crossref.org/fundingdata/funder/10.13039/501100019124en
oaire.fundingStreamSin informaciónen
oaire.awardNumber2023-QUAN-000019-01 QIAen
oaire.awardTitleKonputazio kuantikoa adimen artifizialeko algoritmoetan: konputazio klasikotik Quantum Machine Learning-eraen
oaire.awardURISin informaciónen


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International