dc.rights.license | Attribution 4.0 International | |
dc.contributor.author | Velez de Mendizabal, Iñaki | |
dc.contributor.author | Vidriales Mazorriaga, Xabier | |
dc.contributor.author | Ezpeleta, Iñigo | |
dc.contributor.author | Zurutuza, Urko | |
dc.contributor.other | Basto-Fernandes, Vitor | |
dc.contributor.other | R. Méndez, José | |
dc.date.accessioned | 2024-02-02T08:53:20Z | |
dc.date.available | 2024-02-02T08:53:20Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 1989-1660 | |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=173976 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6248 | |
dc.description.abstract | The evolution of anti-spam filters has forced spammers to make greater efforts to bypass filters in order to distribute content over networks. The distribution of content encoded in images or the use of Leetspeak are concrete and clear examples of techniques currently used to bypass filters. Despite the importance of dealing with these problems, the number of studies to solve them is quite small, and the reported performance is very limited. This study reviews the work done so far (very rudimentary) for Leetspeak deobfuscation and proposes a new technique based on using neural networks for decoding purposes. In addition, we distribute an image database specifically created for training Leetspeak decoding models. We have also created and made available four different corpora to analyse the performance of Leetspeak decoding schemes. Using these corpora, we have experimentally evaluated our neural network approach for decoding Leetspeak. The results obtained have shown the usefulness of the proposed model for addressing the deobfuscation of Leetspeak character sequences. | en |
dc.language.iso | eng | |
dc.publisher | UNIR - Universidad Internacional de La Rioja | |
dc.rights | © 2023 UNIR | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.source | International Journal of Interactive Multimedia and Artificial Intelligence | |
dc.subject | Convolutional Neural Networks | |
dc.subject | Deep Learning | |
dc.subject | Leetspeak | |
dc.subject | ODS 9 Industria, innovación e infraestructura | |
dc.subject | Spam Filtering | |
dc.subject | Text Deobfuscation | |
dc.title | Deobfuscating leetspeak with deep learning to improve spam filtering | |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | |
local.contributor.group | Análisis de datos y ciberseguridad | |
local.description.peerreviewed | true | |
local.identifier.doi | https://doi.org/10.9781/ijimai.2023.07.003 | |
local.rights.publicationfee | APC | |
local.rights.publicationfeeamount | 1300 EUR | |
local.contributor.otherinstitution | https://ror.org/014837179 | |
local.contributor.otherinstitution | https://ror.org/05rdf8595 | |
local.contributor.otherinstitution | Instituto de Investigación Sanitaria Galicia Sur (IISGS) | |
local.source.details | Vol. 8. N. 4. Pp. 46-55 | |
oaire.format.mimetype | application/pdf | |
oaire.file | $DSPACE\assetstore | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
oaire.funderName | Eusko Jaurlaritza = Gobierno Vasco | |
oaire.funderName | Gobierno de España | |
oaire.funderIdentifier | https://ror.org/00pz2fp31 http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | |
oaire.funderIdentifier | https://ror.org/038jjxj40 http://data.crossref.org/fundingdata/funder/10.13039/501100010198 | |
oaire.fundingStream | Ikertalde Convocatoria 2022-2025 | |
oaire.fundingStream | Programa Estatal de Investigación, Desarrollo e Innovación orientada a los retos de la sociedad en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, convocatoria del 2017 | |
oaire.awardNumber | IT1676-22 | |
oaire.awardNumber | TIN2017-84658-C2-2-R | |
oaire.awardTitle | Grupo de sistemas inteligentes para sistemas industriales | |
oaire.awardTitle | Integración de Conocimiento Semántico para el Filtrado de Spam basado en Contenido (SKI4SPAM) | |
oaire.awardURI | Sin información | |
oaire.awardURI | Sin información | |