Registro sencillo

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.contributor.authorARRAZOLA, PEDRO JOSE
dc.contributor.otherDucobu, François
dc.contributor.otherPalanisamy, Nithyaraaj Kugalur
dc.contributor.otherRivière-Lorphèvre, Edouard
dc.date.accessioned2023-06-07T07:22:48Z
dc.date.available2023-06-07T07:22:48Z
dc.date.issued2023
dc.identifier.issn2212-8271en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=172750en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6092
dc.description.abstractThe identification of input parameters for funite element modelling of the cutting process is still a complex task as the experimental testing equipment cannot reach its combined levels of strains, strain rates and temperatures. Inverse identification using Artificial Intelligence method provides a relevant alternative. In this paper, material constitutive and friction models parameters identified with an Efficient Global Optimization algorithm and an ALE orthogonal cutting model are introduced in a CEL model. Assessment of the differences in the results due to the formulation and dependence of parameters identification to the finite element model are then performed.es
dc.description.sponsorshipGobierno Vascoes
dc.description.sponsorshipGobierno de Españaes
dc.description.sponsorshipGobierno de Españaes
dc.language.isoengen
dc.publisherElsevier B.V.en
dc.rights© 2023 The Authors. Published by Elsevier B.V.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCuttingen
dc.subjectFinite element method (FEM)en
dc.subjectPredictive modelen
dc.titleApplication of material constitutive and friction models parameters identified with AI and ALE to a CEL orthogonal cutting modelen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceProcedia CIRPen
local.contributor.groupMecanizado de alto rendimientoes
local.description.peerreviewedtrueen
local.description.publicationfirstpage311en
local.description.publicationlastpage316en
local.identifier.doihttps://doi.org/10.1016/j.procir.2023.03.053en
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Elkartek 2022/KK-2022-00001/CAPV/Desarrollos en la nanoescala para manufactura y asistencia sanitaria/NG22en
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Convocatoria 2018 de proyectos de I+D+i «Retos Investigación», del Programa Estatal de I+D+i Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095463-B-C21/ES/Ingeniería de Superficies a través del mecanizado enfocado a materiales empleados en la aeronáutica y la automoción: proceso de mecanizado enfocado al material/SURFNANOCUTen
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Convocatoria 2018 de proyectos de I+D+i «Retos Investigación», del Programa Estatal de I+D+i Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095463-B-C22/ES/Ingeniería de Superficies mediante el mecanizado controlado de metales aeronáuticos y de la automoción: comprensión del proceso de corte analizando la micro y nano-estructura/SURFNANOCUTen
local.contributor.otherinstitutionhttps://ror.org/02qnnz951es
local.source.detailsVol 117. Pp. 311-316, 2023en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International