dc.contributor.author | Manzano Castro, Marc | |
dc.contributor.other | Marcolla, Chiara | |
dc.contributor.other | Sucasas, Victor | |
dc.contributor.other | Bassoli, Riccardo | |
dc.contributor.other | Fitzek, Frank H. P. | |
dc.contributor.other | Aaraj, Najwa | |
dc.date.accessioned | 2023-01-27T12:25:40Z | |
dc.date.available | 2023-01-27T12:25:40Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1558-2256 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=169004 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/5972 | |
dc.description.abstract | Data privacy concerns are increasing significantly in the context of the Internet of Things, cloud services, edge computing, artificial intelligence applications, and other applications enabled by next-generation networks. Homomorphic encryption addresses privacy challenges by enabling multiple operations to be performed on encrypted messages without decryption. This article comprehensively addresses homomorphic encryption from both theoretical and practical perspectives. This article delves into the mathematical foundations required to understand fully homomorphic encryption ( FHE ). It consequently covers design fundamentals and security properties of FHE and describes the main FHE schemes based on various mathematical problems. On a more practical level, this article presents a view on privacy-preserving machine learning using homomorphic encryption and then surveys FHE at length from an engineering angle, covering the potential application of FHE in fog computing and cloud computing services. It also provides a comprehensive analysis of existing state-of-the-art FHE libraries and tools, implemented in software and hardware, and the performance thereof. | en |
dc.description.sponsorship | Gobierno Vasco-Eusko Jaurlaritza | es |
dc.description.sponsorship | Comisión Europea | es |
dc.description.sponsorship | Gobierno de Alemania | es |
dc.language.iso | eng | en |
dc.publisher | IEEE | en |
dc.rights | © 2022 IEEE | en |
dc.subject | Homomorphic encryption | en |
dc.subject | neural networks | en |
dc.subject | Cloud computing | en |
dc.subject | Public key | en |
dc.subject | Gaussian distribution | en |
dc.subject | Privacy | en |
dc.subject | Internet of Things | en |
dc.title | Survey on Fully Homomorphic Encryption, Theory, and Applications | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.source | Proceedings of the IEEE | en |
local.contributor.group | Análisis de datos y ciberseguridad | es |
local.description.peerreviewed | true | en |
local.description.publicationfirstpage | 1572 | en |
local.description.publicationlastpage | 1609 | en |
local.identifier.doi | https://doi.org/10.1109/JPROC.2022.3205665 | en |
local.relation.projectID | info:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2022-2025/IT1676-22/CAPV/Grupo de sistemas inteligentes para sistemas industriales/ | en |
local.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101015956/EU/A flagship for B5G/6G vision and intelligent fabric of technology enablers connecting human, physical, and digital worlds/Hexa-X | en |
local.relation.projectID | info:eu-repo/grantAgreement/Gobierno de Alemania/Excellence Strategy—EXC2050/390696704/DE/Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop/CeTI | en |
local.contributor.otherinstitution | Technology Innovation Institute (TII), Abu Dhabi | en |
local.contributor.otherinstitution | https://ror.org/028zdr819 | en |
local.contributor.otherinstitution | https://ror.org/042aqky30 | de |
local.source.details | Vol. 110. N. 10. Pp. 1572-1609. October, 2022 | en |
oaire.format.mimetype | application/pdf | |
oaire.file | $DSPACE\assetstore | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |