dc.contributor.author | Shevtsova, Valentina | |
dc.contributor.other | Gaponenko, Yuri | |
dc.contributor.other | Yano, Takeru | |
dc.contributor.other | Nishino, Kazuyoshi | |
dc.contributor.other | Matsumoto, Shuji | |
dc.date.accessioned | 2022-11-24T14:47:16Z | |
dc.date.available | 2022-11-24T14:47:16Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1089-7666 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=169047 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/5885 | |
dc.description.abstract | The stability of thermocapillary/buoyant flows is affected by a remote thermal source. We present a nonlinear two-phase computational study of convection in a liquid bridge that develops under the action of Marangoni and buoyancy forces as well as under the influence of distant thermal disturbances. The gas phase (air) occupies a typical annular container holding a liquid bridge (n-decane, Pr = 14), and the disturbances are locally imposed in the form of hot/cold spots on the outer wall of the container. The hydrothermal wave instability and pattern selection have been explored for two temperature differences Δ𝑇���� by varying the intensity of thermal source Hf over a wide range. Not far from the critical point, in all the cases, the instability emerges in the form of a standing wave, but the azimuthal wavenumber depends on whether the external perturbation is caused by cooling (m = 2) or by heating (m = 1). Further into supercritical area, 45% above the threshold, in the region with thermal perturbations ⎯200<𝐻����𝑓����<50, the flow pattern comprises, but is not limited to, a hydrothermal traveling wave with the azimuthal wavenumber m = 2. For hotter perturbations, the instability develops either in the form of traveling or standing waves, depending on Hf, with the prevailing mode m = 1, but with a strong presence of other modes. | en |
dc.description.sponsorship | Gobierno de Bélgica | es |
dc.description.sponsorship | Gobierno Vasco-Eusko Jaurlaritza | es |
dc.language.iso | eng | en |
dc.publisher | AIP Publishing | en |
dc.rights | © 2022 AIP Publishing | en |
dc.title | Pattern selection for convective flow in a liquid bridge subjected to remote thermal action | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.source | Physics of Fluids | en |
local.contributor.group | Mecánica de fluidos | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.1063/5.0101901 | en |
local.relation.projectID | info:eu-repo/grantAgreement/GV/Elkartek 2022/KK-2022-00047/CAPV/Materiales Magnetoactivos Avanzados para Nuevos Sistemas Inteligentes/MMASINT | en |
local.relation.projectID | info:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2022-2025/IT1505-22/CAPV/Mecánica de fluidos/ | en |
local.contributor.otherinstitution | https://ror.org/01cc3fy72 | en |
local.contributor.otherinstitution | https://ror.org/03zyp6p76 | en |
local.contributor.otherinstitution | https://ror.org/02j6c0d67 | en |
local.source.details | Vol. 34, Nº. 9 34. Article 092102. September, | en |
oaire.format.mimetype | application/pdf | |
oaire.file | $DSPACE\assetstore | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |