Erregistro soila

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.contributor.authorAyala, Unai
dc.contributor.otherIsasi, Iraia
dc.contributor.otherIrusta, Unai
dc.contributor.otherAramendi, Elisabete
dc.contributor.otherAlonso, Erik
dc.contributor.otherKramer-Johansen, Jo
dc.contributor.otherEftestøl, Trygve
dc.date.accessioned2022-07-29T09:29:20Z
dc.date.available2022-07-29T09:29:20Z
dc.date.issued2017
dc.identifier.issn2325-8861en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=150507en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5649
dc.description.abstractPiston-driven mechanical chest compression (CC) devices induce a quasi-periodic artefact in the ECG, making rhythm diagnosis unreliable. Data from 230 out-of-hospital cardiac arrest (OHCA) patients were collected in which CCs were delivered using the piston driven LUCAS-2 device. Underlying rhythms were annotated by expert reviewers in artefact-free intervals. Two artefact removal methods (filters) were introduced: a static solution based on Goertzel’s algorithm, and an adaptive solution based on a Recursive Least Squares (RLS) filter. The filtered ECG was diagnosed by a shock/no-shock decision algorithm used in a commercial defibrillator and compared with the rhythm annotations. Filter performance was evaluated in terms of balanced accuracy (BAC), the mean of sensitivity (shockable) and specificity (nonshockable). Compared to the unfiltered signal, the static filter increased BAC by 20 points, and the RLS filter by 25 points. Adaptive filtering results in 99.0% sensitivity and 87.3% specificity.en
dc.language.isoengen
dc.publisherCinC Computing In Cardiologyen
dc.rights© 2017 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleRemoving piston-driven mechanical chest compression artefacts from the ECGen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.source44th Computing in Cardiology Conference, CinC 2017. Rennes, France. 24-27 September. Computing in Cardiologyen
local.contributor.groupTeoría de la señal y comunicacioneses
local.description.peerreviewedtrueen
local.description.publicationfirstpage1en
local.description.publicationlastpage4en
local.identifier.doihttp://dx.doi.org/10.22489/CinC.2017.009-115en
local.contributor.otherinstitutionhttps://ror.org/000xsnr85eu
local.contributor.otherinstitutionNorwegian National Advisory Unit on Prehospital Emergency Medicineen
local.contributor.otherinstitutionhttps://ror.org/00j9c2840en
local.contributor.otherinstitutionhttps://ror.org/01xtthb56en
local.contributor.otherinstitutionhttps://ror.org/02qte9q33en
local.source.detailsVol. 44. Pp. 1-4. IEEE Computer Society, 2017en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

Attribution-NonCommercial-NoDerivatives 4.0 International
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: Attribution-NonCommercial-NoDerivatives 4.0 International