Title
Reactive power limits of Cascaded H-Bridge STATCOMs in star and delta configuration under negative-sequence current withstandingAuthor (from another institution)
xmlui.dri2xhtml.METS-1.0.item-contributorOtherinstitution
https://ror.org/002xeeh02https://ror.org/002xeeh02
Version
http://purl.org/coar/version/c_71e4c1898caa6e32
Rights
© 2022 Elsevier Ltd. All rights reservedAccess
http://purl.org/coar/access_right/c_f1cfPublisher’s version
https://doi.org/10.1016/j.ijepes.2022.108267Published at
International Journal of Electrical Power and Energy Systems Vol. 142. Part A. N. artículo 108267, 2022Publisher
Elsevier Ltd.Keywords
Cascaded H-Bridge (CHB)
Intercluster power balancing
Negative-sequence current
Static Synchronous Compensator (STATCOM) ... [+]
Intercluster power balancing
Negative-sequence current
Static Synchronous Compensator (STATCOM) ... [+]
Cascaded H-Bridge (CHB)
Intercluster power balancing
Negative-sequence current
Static Synchronous Compensator (STATCOM)
Voltage Source Converter (VSC) [-]
Intercluster power balancing
Negative-sequence current
Static Synchronous Compensator (STATCOM)
Voltage Source Converter (VSC) [-]
Abstract
Flexible AC Transmission System devices (FATCS) and in particular Static Synchronous Compensators (STATCOM) play a key role in the evolution of the modern power grids to the future smart grids. The ST ... [+]
Flexible AC Transmission System devices (FATCS) and in particular Static Synchronous Compensators (STATCOM) play a key role in the evolution of the modern power grids to the future smart grids. The STATCOM is used in an increasingly wider variety of scenarios in which the operation under unbalanced conditions stands out. This paper analyzes and compares the reactive power limits of Cascaded H-Bridge (CHB) STATCOMs in star (YCHB) and delta (DCHB) configuration to withstand negative-sequence current. Zero-sequence voltage for the YCHB and zero-sequence current for the DCHB are injected in order to correct the intercluster uneven active power distribution and thus to preserve the dc-link voltage balancing. Both solutions will have an impact on the power rating of the converter. This work clearly quantifies the reactive power limits of each CHB STATCOM configuration depending on the current unbalance at converter terminals, by means of a systematic procedure. Improved explicit expressions of the zero-sequence current in the DCHB are also provided. Experimental results obtained from a real-scale set-up in a MV laboratory validate the theoretical analysis. [-]
xmlui.dri2xhtml.METS-1.0.item-sponsorship
Gobierno de Españaxmlui.dri2xhtml.METS-1.0.item-projectID
info:eu-repo/grantAgreement/GE/Ayudas para la formación de profesorado universitario, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/FPU18-04246 /ES//Collections
- Articles - Engineering [683]