Erregistro soila

dc.contributor.authorArrieta, Aitor
dc.contributor.authorAyerdi, Jon
dc.contributor.authorIllarramendi, Miren
dc.contributor.authorSagardui, Goiuria
dc.contributor.otherAgirre, Aitor
dc.contributor.otherArratibel, Maite
dc.date.accessioned2022-05-03T15:54:28Z
dc.date.available2022-05-03T15:54:28Z
dc.date.issued2021
dc.identifier.isbn978-1-6654-3567-3en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=163319en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5563
dc.description.abstractThe software of elevators requires maintenance over several years to deal with new functionality, correction of bugs or legislation changes. To automatically validate this software, test oracles are necessary. A typical approach in industry is to use regression oracles. These oracles have to execute the test input both, in the software version under test and in a previous software version. This practice has several issues when using simulation to test elevators dispatching algorithms at system level. These issues include a long test execution time and the impossibility of re-using test oracles both at different test levels and in operation. To deal with these issues, we propose DARIO, a test oracle that relies on regression learning algorithms to predict the Qualify of Service of the system. The regression learning algorithms of this oracle are trained by using data from previously tested versions. An empirical evaluation with an industrial case study demonstrates the feasibility of using our approach in practice. A total of five regression learning algorithms were validated, showing that the regression tree algorithm performed best. For the regression tree algorithm, the accuracy when predicting verdicts by DARIO ranged between 79 to 87%.en
dc.description.sponsorshipUnión Europeaes
dc.description.sponsorshipGobierno Vasco-Eusko Jaurlaritzaes
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2021 IEEEen
dc.subjectMachine learning algorithmsen
dc.subjectsoftware algorithmsen
dc.subjectLegislationen
dc.subjectMachine learningen
dc.subjectMaintenance engineeringen
dc.subjectPrediction algorithmsen
dc.subjectSoftwareen
dc.titleUsing Machine Learning to Build Test Oracles: an Industrial Case Study on Elevators Dispatching Algorithmsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE/ACM International Conference on Automation of Software Test (AST)en
local.contributor.groupIngeniería del software y sistemases
local.description.peerreviewedtrueen
local.description.publicationfirstpage30en
local.description.publicationlastpage39en
local.identifier.doihttps://doi.org/10.1109/AST52587.2021.00012en
local.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/871319/EU/Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for Cyber-Physical Systems of Systems/ADEPTNESSen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2019-2021/IT1326-19/CAPV/Ingeniería de Software y Sistemas/en
local.contributor.otherinstitutionhttps://ror.org/03hp1m080es
local.contributor.otherinstitutionOrona S.Coop.es
local.source.details2021, pp. 30-39en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila