eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
UsingMachineLearningToBuildTestOraclesAnIndustrialCaseStudyOnElevatorsDispatchingAlgorithmss.pdf (913.6Kb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Using Machine Learning to Build Test Oracles: an Industrial Case Study on Elevators Dispatching Algorithms
Autor-a
Arrieta, Aitor
Ayerdi, Jon
Illarramendi, Miren
Sagardui, Goiuria
Autor-a (de otra institución)
Agirre, Aitor
Arratibel, Maite
Grupo de investigación
Ingeniería del software y sistemas
Otras instituciones
Ikerlan
Orona S.Coop.
Versión
Postprint
Derechos
© 2021 IEEE
Acceso
Acceso abierto
URI
https://hdl.handle.net/20.500.11984/5563
Versión del editor
https://doi.org/10.1109/AST52587.2021.00012
Publicado en
IEEE/ACM International Conference on Automation of Software Test (AST)  2021, pp. 30-39
Editor
IEEE
Palabras clave
Machine learning algorithms
software algorithms
Legislation
Machine learning ... [+]
Machine learning algorithms
software algorithms
Legislation
Machine learning
Maintenance engineering
Prediction algorithms
Software [-]
Resumen
The software of elevators requires maintenance over several years to deal with new functionality, correction of bugs or legislation changes. To automatically validate this software, test oracles are n ... [+]
The software of elevators requires maintenance over several years to deal with new functionality, correction of bugs or legislation changes. To automatically validate this software, test oracles are necessary. A typical approach in industry is to use regression oracles. These oracles have to execute the test input both, in the software version under test and in a previous software version. This practice has several issues when using simulation to test elevators dispatching algorithms at system level. These issues include a long test execution time and the impossibility of re-using test oracles both at different test levels and in operation. To deal with these issues, we propose DARIO, a test oracle that relies on regression learning algorithms to predict the Qualify of Service of the system. The regression learning algorithms of this oracle are trained by using data from previously tested versions. An empirical evaluation with an industrial case study demonstrates the feasibility of using our approach in practice. A total of five regression learning algorithms were validated, showing that the regression tree algorithm performed best. For the regression tree algorithm, the accuracy when predicting verdicts by DARIO ranged between 79 to 87%. [-]
Sponsorship
Unión Europea
ID Proyecto
info:eu-repo/grantAgreement/EC/H2020/871319/EU/Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for Cyber-Physical Systems of Systems/ADEPTNESS
Colecciones
  • Congresos - Ingeniería [419]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace