eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Roughness maps to determine the optimum process window parameters in face milling.pdf (2.354Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Roughness maps to determine the optimum process window parameters in face milling
Author
Lazkano Rayo, Xabier
Aristimuño, Patxi Xabier
ARRAZOLA, PEDRO JOSE
Author (from another institution)
Aizpuru, Oihan
Research Group
Mecanizado de alto rendimiento
Other institutions
Zubiola, S. Coop.
Version
Postprint
Rights
© 2022 Elsevier Ltd.
Access
Embargoed access
URI
https://hdl.handle.net/20.500.11984/5524
Publisher’s version
https://doi.org/10.1016/j.ijmecsci.2022.107191
Published at
International Journal of Mechanical Sciences  Vol. 221. N. artículo 107191, 2021
Publisher
Elsevier Ltd.
Keywords
Roughness
Modelling
milling
Optimisation ... [+]
Roughness
Modelling
milling
Optimisation
Predictive model [-]
Abstract
Some industrial applications require structured surfaces with high roughness values to ensure their functionality (Ra > 1 µm, Rmax < 30 µm). In order to obtain these structured surfaces with high roug ... [+]
Some industrial applications require structured surfaces with high roughness values to ensure their functionality (Ra > 1 µm, Rmax < 30 µm). In order to obtain these structured surfaces with high roughness values, face milling operation is commonly used in aluminium components employed in the automotive and aeronautical sectors. Polycrystalline diamond insert tools (PCD) are widely used to obtain those structured surfaces. However, one of the major drawbacks of using face milling is that the roughness presents a high variation across the width of cut. Nevertheless, it is possible to mitigate these variations by (i) modifying the micro-geometry of the inserts, (ii) displacing each tooth by small axial amounts from their nominal positions or (iii) varying the feed rate. Frequently, the definition of those parameters is carried out employing trial-and-error strategies, with consequent cost and time penalties. In this research work, roughness maps have been developed as a novel optimisation tool to define the micro-geometry of the PCD inserts, their axial position in the tool and the feed rate, reducing the time to design new cutting tools for face milling. The roughness maps are determined based on roughness indicators calculated from 3D face milled surfaces that are modelled as a split signal in two components: (i) the kinematic movements of the cutting edge and its geometry, and (ii) a novel approach considering the stochastic roughness, which embraces the chip removal process, material defects or vibrations. The model is validated by experimental face milling tests on A-356 aluminium alloy, showing good agreement with experimental results. [-]
xmlui.dri2xhtml.METS-1.0.item-sponsorship
Gobierno Vasco
xmlui.dri2xhtml.METS-1.0.item-projectID
info:eu-repo/grantAgreement/GV/Programa de apoyo a la I+D Empresarial Hazitek 2020/ZL-2020-00305/CAPV/Diseño y fabricación de herramientas de diamante policristalino (PCD) optimizadas/OptiPCD
Collections
  • Articles - Engineering [743]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace