Title
Building an Air Turbine Conditional Anomaly Detection Approach for Wave Power Plantsxmlui.dri2xhtml.METS-1.0.item-contributorOtherinstitution
https://ror.org/01cc3fy72https://ror.org/01m7qnr31
Biscay Marine Energy Platform
Version
http://purl.org/coar/version/c_970fb48d4fbd8a85
Rights
© The Prognostics and Health Management SocietyAccess
http://purl.org/coar/access_right/c_abf2Publisher’s version
https://doi.org/10.36001/phmconf.2021.v13i1.3028Published at
Proceedings of the Annual Conference of the PHM Society Vol. 13. N. 1, 2021Abstract
The Mutriku Wave Power Plant (WPP) is a wave energy conversion plant based on the oscillating water column technology (OWC). The energy production and the health state of the plant are directly depend ... [+]
The Mutriku Wave Power Plant (WPP) is a wave energy conversion plant based on the oscillating water column technology (OWC). The energy production and the health state of the plant are directly dependent on the sea-state conditions along with component-specific operation efficiency and failure modes. In this context, this paper presents a preliminary air turbine conditional anomaly detection (CAD) approach for condition monitoring of the Mutriku WPP. The proposed approach is developed based on an ensemble of Gaussian Mixture models, where each anomaly detection model learns the expected air turbine operation conditioned on specific seastates information. Early results show that the integration of sea-states in the anomaly detection learning process improves the discrimination capability of the anomaly detection model. [-]
Collections
The following license files are associated with this item: