Erregistro soila

dc.rights.licenseAttribution 4.0 International*
dc.contributor.authorMuxika Olasagasti, Eñaut
dc.contributor.otherArrinda Martínez, Mikel
dc.contributor.otherOyarbide Urquiz, mi
dc.contributor.otherMacicior, Haritz
dc.contributor.otherPopp, Hartmut
dc.contributor.otherJahn, Marcus
dc.contributor.otherGanev, Boschidar
dc.contributor.otherCendoya, Iosu
dc.date.accessioned2021-06-07T15:07:09Z
dc.date.available2021-06-07T15:07:09Z
dc.date.issued2021
dc.identifier.issn2313-0105en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=163668en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5313
dc.description.abstractThe end-of-life event of the battery system of an electric vehicle is defined by a fixed end-oflife threshold value. However, this kind of end-of-life threshold does not capture the application and battery characteristics and, consequently, it has a low accuracy in describing the real end-of-life event. This paper proposes a systematic methodology to determine the end-of-life threshold that describes accurately the end-of-life event. The proposed methodology can be divided into three phases. In the first phase, the health indicators that represent the aging behavior of the battery are defined. In the second phase, the application specifications and battery characteristics are evaluated to generate the end-of-life criteria. Finally, in the third phase, the simulation environment used to calculate the end-of-life threshold is designed. In this third phase, the electric-thermal behavior of the battery at different aging conditions is simulated using an electro-thermal equivalent circuit model. The proposed methodology is applied to a high-energy electric vehicle application and to a high-power electric vehicle application. The stated hypotheses and the calculated end-of-life threshold of the high-energy application are empirically validated. The study shows that commonly assumed 80 or 70% EOL thresholds could lead to mayor under or over lifespan estimations.en
dc.description.sponsorshipComisión Europeaes
dc.language.isoengen
dc.publisherMDPIen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectend of lifeen
dc.subjectlithium-ion batteriesen
dc.subjectsimulation approachen
dc.subjectelectro-thermalmodelen
dc.subjectelectric vehicleen
dc.titleApplication Dependent End-of-Life Threshold Definition Methodology for Batteries in Electric Vehiclesen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceBatteriesen
local.contributor.groupTeoría de la señal y comunicacioneses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.3390/batteries7010012en
local.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/770054/EU/Industrial Modular Battery Pack Concept Addressing High Energy Density, Environmental Friendliness, Flexibility and Cost Efficiency for Automotive Applications/iModBatten
local.rights.publicationfeeAPCen
local.contributor.otherinstitutionhttps://ror.org/03vgz7r63es
local.contributor.otherinstitutionhttps://ror.org/04knbh022es
local.source.detailsBatteries. Vol. 7. N. 1. N. artículo 12,en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

Attribution 4.0 International
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: Attribution 4.0 International