Erregistro soila

dc.contributor.authorArrieta, Aitor
dc.contributor.authorAgirre, Joseba Andoni
dc.contributor.authorSagardui, Goiuria
dc.date.accessioned2020-04-20T16:22:15Z
dc.date.available2020-04-20T16:22:15Z
dc.date.issued2020
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=157946en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/1632
dc.description.abstractThe time it takes software systems to be tested is usually long. This is often caused by the time it takes the entire test suite to be executed. To optimize this, regression test selection approaches have allowed for improvements to the cost-effectiveness of verification and validation activities in the software industry. In this area, multi-objective algorithms have played a key role in selecting the appropriate subset of test cases from the entire test suite. In this paper, we propose a set of seeding strategies for the test case selection problem that generate the initial population of multi-objective algorithms.We integrated these seeding strategies with an NSGA-II algorithm for solving the test case selection problem in the context of simulation-based testing. We evaluated the strategies with six case studies and a total of 21 fitness combinations for each case study (i.e., a total of 126 problems). Our evaluation suggests that these strategies are indeed helpful for solving the multi-objective test case selection problem. In fact, two of the proposed seeding strategies outperformed the NSGA-II algorithm without seeding population with statistical significance for 92.8 and 96% of the problems.en
dc.description.sponsorshipGobierno Vascoes
dc.language.isoengen
dc.publisherACMen
dc.rights© 2020 Association for Computing Machineryen
dc.subjectTest Case Selectionen
dc.subjectSearch-based Software Testingen
dc.subjectRegression Testingen
dc.titleSeeding Strategies for Multi-Objective Test Case Selection: An Application on Simulation-based Testingen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceProceedings of the 2020 Genetic and Evolutionary Computation Conference GECCO 2020. Cancún. 18-22 julio 2020.en
local.contributor.groupIngeniería del software y sistemases
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1145/3377930.3389810
local.relation.projectIDGV/Elkartek 2019/KK-2019-00026/CAPV/Nuevas técnicas de Verificación, Validación y Testing para Sistemas ciber-físicos de Elevación/TESEOen
local.relation.projectIDGV/Ikertalde Convocatoria 2019-2021/IT1326-19/CAPV/Ingeniería del software y sistemas//en
local.source.detailsPp. 1222–1231, 2020eu_ES
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila