Simple record

dc.contributor.authorIturbe, Mikel
dc.contributor.authorGaritano, Iñaki
dc.contributor.authorZurutuza, Urko
dc.contributor.authorUribeetxeberria, Roberto
dc.contributor.otherCamacho, José
dc.date.accessioned2019-04-08T12:05:33Z
dc.date.available2019-04-08T12:05:33Z
dc.date.issued2016
dc.identifier.isbn978-1-5090-3688-2en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=123680en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/1184
dc.description.abstractProcess Control Systems (PCSs) are the operat-ing core of Critical Infrastructures (CIs). As such, anomalydetection has been an active research field to ensure CInormal operation. Previous approaches have leveraged networklevel data for anomaly detection, or have disregarded theexistence of process disturbances, thus opening the possibility of mislabelling disturbances as attacks and vice versa. In thispaper we present an anomaly detection and diagnostic systembased on Multivariate Statistical Process Control (MSPC), thataims to distinguish between attacks and disturbances. For this end, we expand traditional MSPC to monitor process leveland controller level data. We evaluate our approach using the Tennessee-Eastman process. Results show that our approachcan be used to distinguish disturbances from intrusions to acertain extent and we conclude that the proposed approach canbe extended with other sources of data for improving results.en
dc.description.sponsorshipGobierno de Españaes
dc.description.sponsorshipGobierno Vascoes
dc.description.sponsorshipDiputación Foral de Gipuzkoaes
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2016 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectprocess control systemsen
dc.subjectMultivariate Statistical Process Controlen
dc.subjectTennessee-Eastmanen
dc.titleOn the Feasibility of Distinguishing Between Process Disturbances and Intrusions in Process Control Systems using Multivariate Statistical Process Controlen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceProceedings of the 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN). Toulouse. 28 June- 1 August. IEEE, 2016en
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.description.publicationfirstpage155en
local.description.publicationlastpage160en
local.identifier.doihttp://dx.doi.org/10.1109/DSN-W.2016.32en
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Programa Estatal de Investigacion, Desarrollo e Innovación orientada a los retos de la sociedad en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, convocatoria del 2017/TIN2017-84658-C2-2-R/Integración de Conocimiento Semántico para el Filtrado de Spam basado en Contenido/SKI4SPAMen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Elkartek 2015/KK-2015-00080/CAPV/Big Data para RIS3/BID3Aen
local.relation.projectIDinfo:eu-repo/grantAgreement/DFG/Red guipuzcoana de Ciencia, Tecnología e Innovación 2015/56-15/Knowledge for EMULAB-based Applications/KEAen
local.source.detailsxxxeu_ES
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record