dc.contributor.author | Iturbe, Mikel | |
dc.contributor.author | Garitano, Iñaki | |
dc.contributor.author | Zurutuza, Urko | |
dc.contributor.author | Uribeetxeberria, Roberto | |
dc.contributor.other | Camacho, José | |
dc.date.accessioned | 2019-04-08T12:05:33Z | |
dc.date.available | 2019-04-08T12:05:33Z | |
dc.date.issued | 2016 | |
dc.identifier.isbn | 978-1-5090-3688-2 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=123680 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/1184 | |
dc.description.abstract | Process Control Systems (PCSs) are the operat-ing core of Critical Infrastructures (CIs). As such, anomalydetection has been an active research field to ensure CInormal operation. Previous approaches have leveraged networklevel data for anomaly detection, or have disregarded theexistence of process disturbances, thus opening the possibility of mislabelling disturbances as attacks and vice versa. In thispaper we present an anomaly detection and diagnostic systembased on Multivariate Statistical Process Control (MSPC), thataims to distinguish between attacks and disturbances. For this end, we expand traditional MSPC to monitor process leveland controller level data. We evaluate our approach using the Tennessee-Eastman process. Results show that our approachcan be used to distinguish disturbances from intrusions to acertain extent and we conclude that the proposed approach canbe extended with other sources of data for improving results. | en |
dc.description.sponsorship | Gobierno de España | es |
dc.description.sponsorship | Gobierno Vasco | es |
dc.description.sponsorship | Diputación Foral de Gipuzkoa | es |
dc.language.iso | eng | en |
dc.publisher | IEEE | en |
dc.rights | © 2016 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en |
dc.subject | process control systems | en |
dc.subject | Multivariate Statistical Process Control | en |
dc.subject | Tennessee-Eastman | en |
dc.title | On the Feasibility of Distinguishing Between Process Disturbances and Intrusions in Process Control Systems using Multivariate Statistical Process Control | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.source | Proceedings of the 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN). Toulouse. 28 June- 1 August. IEEE, 2016 | en |
local.contributor.group | Análisis de datos y ciberseguridad | es |
local.description.peerreviewed | true | en |
local.description.publicationfirstpage | 155 | en |
local.description.publicationlastpage | 160 | en |
local.identifier.doi | http://dx.doi.org/10.1109/DSN-W.2016.32 | en |
local.relation.projectID | info:eu-repo/grantAgreement/GE/Programa Estatal de Investigacion, Desarrollo e Innovación orientada a los retos de la sociedad en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, convocatoria del 2017/TIN2017-84658-C2-2-R/Integración de Conocimiento Semántico para el Filtrado de Spam basado en Contenido/SKI4SPAM | en |
local.relation.projectID | info:eu-repo/grantAgreement/GV/Elkartek 2015/KK-2015-00080/CAPV/Big Data para RIS3/BID3A | en |
local.relation.projectID | info:eu-repo/grantAgreement/DFG/Red guipuzcoana de Ciencia, Tecnología e Innovación 2015/56-15/Knowledge for EMULAB-based Applications/KEA | en |
local.source.details | xxx | eu_ES |
oaire.format.mimetype | application/pdf | |
oaire.file | $DSPACE\assetstore | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |