Registro sencillo

dc.contributor.authorCarrera-Rivera, Angela
dc.contributor.authorLarrinaga, Felix
dc.contributor.authorLasa, Ganix
dc.contributor.authorReguera-Bakhache, Daniel
dc.contributor.otherUnamuno, Gorka
dc.date.accessioned2024-11-22T09:03:45Z
dc.date.available2024-11-22T09:03:45Z
dc.date.issued2024
dc.identifier.isbn978-3-031-71697-3en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=178400en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6816
dc.description.abstractHuman–machine interfaces (HMI) facilitate communication between humans and machines, and their importance has increased in modern technology. However, traditional HMIs are often static and do not adapt to individual user preferences or behavior. Adaptive User Interfaces (AUIs) have become increasingly important in providing personalized user experiences. Machine-learning techniques have gained traction in User Experience (UX) research to provide smart adaptations that can reduce user cognitive load. This chapter focuses on the development of adaptive HMIs within industrial contexts, offering a structured framework. It provides an overview of the past and present of HMIs and AUIs, while also outlining prospects for future research. The framework, enhanced by user interactions and Context-Aware Recommendation Systems (CARS), aims to provide tailored adaptations, thereby improving overall UX. A case study highlights real-time remote monitoring in smart factories, improving the ease of use and ease of decision making. The study demonstrates the framework usage in addressing real-world HMI, discussing results, challenges, and limitations.en
dc.language.isoengen
dc.publisherSpringer Natureen
dc.rights© 2025 The Author(s)en
dc.subjectODS 8 Trabajo decente y crecimiento económicoes
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.titleFrom Past to Present: Human-Machine Interfaces Evolve Toward Adaptivityen
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceFuture Perspectives on Human-Computer Interaction Research: Towards the Year 2030en
local.contributor.groupCentro de Innovación en Diseñoes
local.contributor.groupAnálisis de datos y ciberseguridades
local.contributor.groupIngeniería del software y sistemases
local.description.peerreviewedtrueen
local.description.publicationfirstpage151en
local.description.publicationlastpage186en
local.identifier.doihttps://doi.org/10.1007/978-3-031-71697-3_7en
local.embargo.enddate2025-10-31
local.contributor.otherinstitutionhttps://ror.org/003qafx79es
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_3248en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
oaire.funderNameComisión Europeaen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00k4n6c32 / http://data.crossref.org/fundingdata/funder/10.13039/501100000780en
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.fundingStreamH2020-MSCA-ITN-2018en
oaire.fundingStreamIkertalde Convocatoria 2022-2025en
oaire.fundingStreamIkertalde Convocatoria 2022-2023en
oaire.awardNumber814078en
oaire.awardNumberIT1676-22en
oaire.awardNumberIT1519-22en
oaire.awardTitleDigital Manufacturing and Design Training Network (DIMAND)en
oaire.awardTitleGrupo de sistemas inteligentes para sistemas industriales. IKERTALDE 2022-2025en
oaire.awardTitleIngeniería de Software y Sistemas. IKERTALDE 2022-2023en
oaire.awardURIhttps://doi.org/10.3030/814078en
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo