Izenburua
EEG motor imagery classification: tangent space with gate-generated weight classifierEgilea
Beste instituzio
Universidad Carlos III de MadridBertsioa
Bertsio argitaratua
Eskubideak
© 2024 The AuthorsSarbidea
Sarbide irekiaArgitaratzailearen bertsioa
https://doi.org/10.3390/biomimetics9080459Non argitaratua
Biomimetics Argitaratzailea
MDPIGako-hitzak
interfacesmotor imagery
tangent space
gender-based analysis
Laburpena
Individuals grappling with severe central nervous system injuries often face significant challenges related to sensorimotor function and communication abilities. In response, brain–computer interface ... [+]
Individuals grappling with severe central nervous system injuries often face significant challenges related to sensorimotor function and communication abilities. In response, brain–computer interface (BCI) technology has emerged as a promising solution by offering innovative interaction methods and intelligent rehabilitation training. By leveraging electroencephalographic (EEG) signals, BCIs unlock intriguing possibilities in patient care and neurological rehabilitation. Recent research has utilized covariance matrices as signal descriptors. In this study, we introduce two methodologies for covariance matrix analysis: multiple tangent space projections (M-TSPs) and Cholesky decomposition. Both approaches incorporate a classifier that integrates linear and nonlinear features, resulting in a significant enhancement in classification accuracy, as evidenced by meticulous experimental evaluations. The M-TSP method demonstrates superior performance with an average accuracy improvement of 6.79% over Cholesky decomposition. Additionally, a gender-based analysis reveals a preference for men in the obtained results, with an average improvement of 9.16% over women. These findings underscore the potential of our methodologies to improve BCI performance and highlight gender-specific performance differences to be examined further in our future studies. [-]
Finantzatzailea
Gobierno VascoGobierno Vasco
Programa
Elkartek 2022Elkartek 2023
Zenbakia
KK-2022-00024KK-2023-00055
Laguntzaren URIa
Sin informaciónSin información
Proiektua
Producción Fluída y Resiliente para la Industria inteligente (PROFLOW)Tecnologías de Inteligencia Artificial para la percepción visual y háptica y la planificación y control de tareas de manipulación (HELDU)
Bildumak
Item honek honako baimen-fitxategi hauek dauzka asoziatuta: