dc.rights.license | Attribution-4.0 International | * |
dc.contributor.author | Alcibar, Jokin | |
dc.contributor.author | Aizpurua Unanue, Jose Ignacio | |
dc.contributor.author | Zugasti, Ekhi | |
dc.date.accessioned | 2024-11-14T10:06:44Z | |
dc.date.available | 2024-11-14T10:06:44Z | |
dc.date.issued | 2024 | |
dc.identifier.isbn | 978-1-936263-40-0 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=178488 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6774 | |
dc.description.abstract | Batteries are a key enabling technology for the decarbonization of transport and energy sectors. The safe and reliable
operation of batteries is crucial for battery-powered systems.
In this direction, the development of accurate and robust battery state-of-health prognostics models can unlock the potential of autonomous systems for complex, remote and reliable
operations. The combination of Neural Networks, Bayesian
modelling concepts and ensemble learning strategies, form
a valuable prognostics framework to combine uncertainty in
a robust and accurate manner. Accordingly, this paper introduces a Bayesian ensemble learning approach to predict
the capacity depletion of lithium-ion batteries. The approach
accurately predicts the capacity fade and quantifies the uncertainty associated with battery design and degradation processes. The proposed Bayesian ensemble methodology employs a stacking technique, integrating multiple Bayesian neural networks (BNNs) as base learners, which have been trained
on data diversity. The proposed method has been validated
using a battery aging dataset collected by the NASA Ames
Prognostics Center of Excellence. Obtained results demonstrate the improved accuracy and robustness of the proposed
probabilistic fusion approach with respect to (i) a single BNN
model and (ii) a classical stacking strategy based on different
BNNs. | en |
dc.language.iso | eng | en |
dc.publisher | PHM Society | en |
dc.rights | © 2024 The Authors | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Bayesian optimization | en |
dc.subject | Uncertainty analysis | en |
dc.title | Towards a Probabilistic Fusion Approach for Robust Battery Prognostics | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.bibliographicCitation | 856 | en |
dcterms.source | European Conference of the Prognostics and Health Management Society | en |
local.contributor.group | Almacenamiento de energía | es |
local.contributor.group | Análisis de datos y ciberseguridad | es |
local.description.peerreviewed | true | en |
local.description.publicationfirstpage | 868 | en |
local.identifier.doi | https://doi.org/10.36001/phme.2024.v8i1.3981 | en |
local.contributor.otherinstitution | https://ror.org/01cc3fy72 | es |
local.source.details | 8. Praga, 3-5 julio, 2024 | |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | en |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | en |
oaire.funderName | Gobierno Vasco | en |
oaire.funderName | Gobierno Vasco | en |
oaire.funderName | Gobierno Vasco | en |
oaire.funderIdentifier | https://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | en |
oaire.funderIdentifier | https://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | en |
oaire.funderIdentifier | https://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | en |
oaire.fundingStream | Elkartek 2023 | en |
oaire.fundingStream | Ikertalde Convocatoria 2022-2023 | en |
oaire.fundingStream | Ikertalde Convocatoria 2022-2025 | en |
oaire.awardNumber | KK-2023-00041 | en |
oaire.awardNumber | IT1451-22 | en |
oaire.awardNumber | IT1676-22 | en |
oaire.awardTitle | Materiales magnetoactivos avanzados para nuevos sistemas inteligentes (MMASINT) | en |
oaire.awardTitle | Teoría de la Señal y Comunicaciones. IKERTALDE 2022-2023 | en |
oaire.awardTitle | Grupo de sistemas inteligentes para sistemas industriales. IKERTALDE 2022-2025 | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |