dc.identifier.citation | Spitaels, L., Aldeiturriaga Olabarri, N., Bossu, J., Martic, G., Juste, E., Riviere-Lorphevre, E., Arrazola, P.-J., & Ducobu, F. (2024). Experimental evaluation of the maximal force before debonding a part from the build platform of an AM printer. Materials Research Proceedings, 41, 90-99. https://doi.org/10.21741/9781644903131-10 | |
dc.description.abstract | Hybrid manufacturing relies on the combination of different processes to overcome their own limitations. Combining additive manufacturing such as material extrusion (MEX) and subtractive conventional processes such as milling enables the production of complex design parts with smooth surface and tight tolerances to be foreseen. However, finishing a part directly in the printer by milling operations brings new questions as the maximal force the part can withstand before debonding from the build platform. This paper proposes an experimental method to determine this force by studying the influence of several parameters: the adhesion strategy, the infill pattern and density, the zone of the part where the force is applied as well as the influence of the part design. The method was successfully tested with Polylactic Acid (PLA) parts on a standard MEX printer: the Ultimaker 2+. In the best configuration: no brim, cubic infill of 95% and a force applied on an entire part face, the parts resisted to a force of 50.59 N ± 1.97 N. | |