Registro sencillo

dc.contributor.authorReguera-Bakhache, Daniel
dc.contributor.authorGaritano, Iñaki
dc.contributor.authorUribeetxeberria, Roberto
dc.contributor.authorCernuda, Carlos
dc.contributor.authorZurutuza, Urko
dc.date.accessioned2024-10-24T05:59:51Z
dc.date.available2024-10-24T05:59:51Z
dc.date.issued2020
dc.identifier.isbn978-1-7281-8956-7en
dc.identifier.issn1946-0759en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=159856en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6682
dc.description.abstractThe application of Artificial Intelligence (AI) into Industrial Human-Machine Interfaces (HMIs) moved old systems with physical buttons and analogue actuators into adaptive interaction models and context-based self adjusted interfaces.To date, little attention has been paid to industrial Human-Machine Interfaces (HMI) which play a vital role in the communication between operator and complex productive systems. Current industrial HMIs do not take into account operator behaviour, but rather focus on the production process. To enhance User Experience (UX) and improve performance it is necessary to adapt the interface to the needs of the operator.This paper proposes a Machine Learning (ML) based operator interaction Data-Driven methodology to extract a set of interface adaptation rules. The methodology optimizes the interaction by reducing the number of actions and hence the amount of time and possible errors in repetitive monitoring and control tasks. An experiment with real operators was conducted to validate the proposed approach. The system was able to extract their interaction patterns and propose temporal interface adaptations, leading to a personalized, adaptive and more effective interaction.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2020 IEEEen
dc.subjectInterfacesen
dc.subjectAdaptive user interfacesen
dc.subjectHuman-Machine Interfaceen
dc.subjecttemporal interaction patternsen
dc.titleData-Driven Industrial Human-Machine Interface Temporal Adaptation for Process Optimizationen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE International Conference on Emerging Technologies and Factory Automation (ETFA)en
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.description.publicationfirstpage518en
local.description.publicationlastpage525en
local.identifier.doihttps://doi.org/10.1109/ETFA46521.2020.9211930en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept6039en
dc.unesco.clasificacionhttp://skos.um.es/unesco6/3304en


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo