dc.contributor.author | Izagirre, Unai | |
dc.contributor.author | andonegui, imanol | |
dc.contributor.author | Eciolaza, Luka | |
dc.contributor.author | Zurutuza, Urko | |
dc.date.accessioned | 2024-07-02T09:28:30Z | |
dc.date.available | 2024-07-02T09:28:30Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0736-5845 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=159488 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6567 | |
dc.description.abstract | In this manuscript we report on a vision-based data-driven methodology for industrial robot health assessment. We provide an experimental evidence of the usefulness of our methodology on a system comprised of a 6-axis industrial robot, two monocular cameras and five binary squared fiducial markers. The fiducial marker system permits to accurately track the deviation of the end-effector along a fixed non-trivial trajectory. Moreover, we monitor the trajectory deflection using three gradually increasing weights attached to the end-effector. When the robot is loaded with the maximum allowed payload, a deviation of 0.77mm is identified in the Z-coordinate of the end-effector. Tracing trajectory information, we train five supervised learning regression models. Such models are afterwards used to predict the deviation of the end-effector, using the pose estimation provided by the visual tracking system. As a result of this study, we show that this procedure is a stable, robust, rigorous and reliable tool for robot trajectory deviation estimation and it even allows to identify the mechanical element producing non-kinematic errors. | en |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.rights | © 2021 Elsevier | en |
dc.subject | robot health monitoring | en |
dc.subject | industrial robot | en |
dc.subject | PHM | en |
dc.subject | Machine learning | en |
dc.subject | augmented reality | en |
dc.title | Towards manufacturing robotics accuracy degradation assessment: A vision-based data-driven implementation | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_f1cf | en |
dcterms.source | Robotics and Computer-Integrated Manufacturing | en |
local.contributor.group | Análisis de datos y ciberseguridad | es |
local.contributor.group | Robótica y automatización | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.1016/j.rcim.2020.102029 | en |
local.source.details | 2021. Vol. 67. N. Art. 102029 | |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | en |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | en |