Simple record

dc.contributor.authorIzagirre, Unai
dc.contributor.authorandonegui, imanol
dc.contributor.authorEciolaza, Luka
dc.contributor.authorZurutuza, Urko
dc.date.accessioned2024-07-02T09:28:30Z
dc.date.available2024-07-02T09:28:30Z
dc.date.issued2021
dc.identifier.issn0736-5845en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=159488en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6567
dc.description.abstractIn this manuscript we report on a vision-based data-driven methodology for industrial robot health assessment. We provide an experimental evidence of the usefulness of our methodology on a system comprised of a 6-axis industrial robot, two monocular cameras and five binary squared fiducial markers. The fiducial marker system permits to accurately track the deviation of the end-effector along a fixed non-trivial trajectory. Moreover, we monitor the trajectory deflection using three gradually increasing weights attached to the end-effector. When the robot is loaded with the maximum allowed payload, a deviation of 0.77mm is identified in the Z-coordinate of the end-effector. Tracing trajectory information, we train five supervised learning regression models. Such models are afterwards used to predict the deviation of the end-effector, using the pose estimation provided by the visual tracking system. As a result of this study, we show that this procedure is a stable, robust, rigorous and reliable tool for robot trajectory deviation estimation and it even allows to identify the mechanical element producing non-kinematic errors.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2021 Elsevieren
dc.subjectrobot health monitoringen
dc.subjectindustrial roboten
dc.subjectPHMen
dc.subjectMachine learningen
dc.subjectaugmented realityen
dc.titleTowards manufacturing robotics accuracy degradation assessment: A vision-based data-driven implementationen
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceRobotics and Computer-Integrated Manufacturingen
local.contributor.groupAnálisis de datos y ciberseguridades
local.contributor.groupRobótica y automatizaciónes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.rcim.2020.102029en
local.source.details2021. Vol. 67. N. Art. 102029
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record