dc.contributor.author | Intxausti Arbaiza, Eneko | |
dc.contributor.author | Zugasti, Ekhi | |
dc.contributor.author | Cernuda, Carlos | |
dc.contributor.other | Leibar, Ane Miren | |
dc.contributor.other | Elizondo, Estibaliz | |
dc.date.accessioned | 2024-03-18T09:53:17Z | |
dc.date.available | 2024-03-18T09:53:17Z | |
dc.date.issued | 2023 | |
dc.identifier.isbn | 978-3-031-49018-7 | en |
dc.identifier.issn | 1611-3349 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=173969 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6291 | |
dc.description.abstract | Defect detection plays a vital role in ensuring product quality and safety within industrial casting processes. In these dynamic environments, the occasional emergence of new defects in the production line poses a significant challenge for supervised methods. We present a defect detection framework to effectively detect novel defect patterns without prior exposure during training. Our method is based on contrastive learning applied to the Faster R-CNN model, enhanced with a contrastive head to obtain discriminative representations of different defects. By training on an diverse and comprehensive labeled dataset, our method achieves comparable performance to the supervised baseline model, showcasing commendable defect detection capabilities. To evaluate the robustness of our approach, we authentically replicate a real-world use case by deliberately excluding several defect types from the training data. Remarkably, in this new context, our proposed method significantly improves detection performance of the baseline model, particularly in situations with very limited training data, showcasing a remarkable 34.7% enhancement. Our research highlights the potential of the proposed method in real-world environments where the number of available images may be limited or inexistent. By providing valuable insights into defect detection in challenging scenarios, our framework could contribute to ensuring efficient and reliable product quality and safety in industrial manufacturing processes. | en |
dc.description.sponsorship | Gobierno Vasco | es |
dc.language.iso | eng | en |
dc.publisher | Springer | en |
dc.rights | © 2023 Springer | en |
dc.subject | Defect detection | en |
dc.subject | contrastive learning | en |
dc.subject | casting | en |
dc.subject | optical quality control | en |
dc.subject | deep learning | en |
dc.title | Towards robust defect detection in casting using contrastive learning | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_f1cf | en |
dcterms.source | 26th Iberoamerican Congress on Pattern Recognition (CIARP 2023). Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Lecture Notes in Computer Science | en |
local.contributor.group | Análisis de datos y ciberseguridad | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.1007/978-3-031-49018-7_43 | en |
local.embargo.enddate | 2025-11-30 | |
local.contributor.otherinstitution | Fagor Ederlan, S. Coop. | es |
local.contributor.otherinstitution | Edertek S. Coop. | es |
local.source.details | Vol. 14469. Pp. 605-616. | en |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |
oaire.funderName | Eusko Jaurlaritza = Gobierno Vasco | |
oaire.funderIdentifier | https://ror.org/00pz2fp31 http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | |
oaire.fundingStream | Elkartek 2022 | |
oaire.awardNumber | KK-2022/00049 | |
oaire.awardTitle | Deeplearning REcomendation Manufacturing Imperfection Novelty Detection (DREMIND) | |
oaire.awardURI | Sin información | |