Registro sencillo

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.contributor.authorPeralta Abadía, José Joaquín
dc.contributor.authorCUESTA ZABALAJAUREGUI, MIKEL
dc.contributor.authorLarrinaga, Felix
dc.date.accessioned2024-01-19T12:14:21Z
dc.date.available2024-01-19T12:14:21Z
dc.date.issued2023
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=172533en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6115
dc.description.abstractFor Industry 4.0, tool condition monitoring (TCM) of machining processes aims to increase process efficiency and quality and lower tool maintenance costs. To this end, TCM systems monitor variables of interest, such as tool wear. In this paper, a novel meta-learning strategy based on ensemble learning and deep learning (DL) is proposed for tool wear monitoring and is compared with state-of-the-art DL models selected from recent literature, using open-access datasets as input validating its implementation in an industrial scenario. As a result of this study, a novel meta-learning strategy for tool wear monitoring with minimum error is proposed and validated.en
dc.description.sponsorshipComisión Europeaes
dc.description.sponsorshipGobierno Vascoes
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2024 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecttool wearen
dc.subjectdeep learningen
dc.subjectIndustry 4.0en
dc.subjecttool condition monitoringen
dc.subjectensemble learningen
dc.titleA meta-learning strategy based on deep ensemble learning for tool condition monitoring of machining processesen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceProcedia CIRPen
local.contributor.groupIngeniería del software y sistemases
local.contributor.groupMecanizado de alto rendimientoes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.procir.2024.08.391
local.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/814078/EU/Digital Manufacturing and Design Training Network/DiManDen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2022-2023/IT1519-22/CAPV/Ingeniería de Software y Sistemas/en
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Ikasiker 2022-2023/IT1443-22/CAPV/Grupo de Mecanizado de Alto Rendimiento/en
local.rights.publicationfeeAPCen
local.rights.publicationfeeamount740 EURen
local.source.detailsVolume 126, 2024, Pages 429-434en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International