dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.contributor.author | Peralta Abadía, José Joaquín | |
dc.contributor.author | CUESTA ZABALAJAUREGUI, MIKEL | |
dc.contributor.author | Larrinaga, Felix | |
dc.date.accessioned | 2024-01-19T12:14:21Z | |
dc.date.available | 2024-01-19T12:14:21Z | |
dc.date.issued | 2023 | |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=172533 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6115 | |
dc.description.abstract | For Industry 4.0, tool condition monitoring (TCM) of machining processes aims to increase process efficiency and quality and lower tool maintenance costs. To this end, TCM systems monitor variables of interest, such as tool wear. In this paper, a novel meta-learning strategy based on ensemble learning and deep learning (DL) is proposed for tool wear monitoring and is compared with state-of-the-art DL models selected from recent literature, using open-access datasets as input validating its implementation in an industrial scenario. As a result of this study, a novel meta-learning strategy for tool wear monitoring with minimum error is proposed and validated. | en |
dc.description.sponsorship | Comisión Europea | es |
dc.description.sponsorship | Gobierno Vasco | es |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.rights | © 2024 The Authors | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | tool wear | en |
dc.subject | deep learning | en |
dc.subject | Industry 4.0 | en |
dc.subject | tool condition monitoring | en |
dc.subject | ensemble learning | en |
dc.title | A meta-learning strategy based on deep ensemble learning for tool condition monitoring of machining processes | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
dcterms.source | Procedia CIRP | en |
local.contributor.group | Ingeniería del software y sistemas | es |
local.contributor.group | Mecanizado de alto rendimiento | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.1016/j.procir.2024.08.391 | |
local.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/814078/EU/Digital Manufacturing and Design Training Network/DiManD | en |
local.relation.projectID | info:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2022-2023/IT1519-22/CAPV/Ingeniería de Software y Sistemas/ | en |
local.relation.projectID | info:eu-repo/grantAgreement/GV/Ikasiker 2022-2023/IT1443-22/CAPV/Grupo de Mecanizado de Alto Rendimiento/ | en |
local.rights.publicationfee | APC | en |
local.rights.publicationfeeamount | 740 EUR | en |
local.source.details | Volume 126, 2024, Pages 429-434 | en |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |