Registro sencillo

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.contributor.authorAlberdi Aramendi, Ane
dc.contributor.otherHernandez, Mikel
dc.contributor.otherEpelde, Gorka
dc.contributor.otherGil-Redondo, Rubén
dc.contributor.otherEmbade, Nieves
dc.contributor.otherCilla, Rodrigo
dc.contributor.otherRankin, Debbie
dc.date.accessioned2023-03-01T20:34:53Z
dc.date.available2023-03-01T20:34:53Z
dc.date.issued2023
dc.identifier.issn2511-705Xen
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=171696en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6025
dc.description.abstractBackground. Synthetic tabular data generation is a potentially valuable technology with great promise for data augmentation and privacy preservation. However, prior to adoption, an empirical assessment of generated synthetic tabular data is required across dimensions relevant to the target application to determine its efficacy. A lack of standardized and objective evaluation and benchmarking strategy for synthetic tabular data in the health domain has been found in the literature. Objective. The aim of this paper is to identify key dimensions, per dimension metrics, and methods for evaluating synthetic tabular data generated with different techniques and configurations for health domain application development and to provide a strategy to orchestrate them. Methods. Based on the literature, the resemblance, utility, and privacy dimensions have been prioritized, and a collection of metrics and methods for their evaluation are orchestrated into a complete evaluation pipeline. This way, a guided and comparative assessment of generated synthetic tabular data can be done, categorizing its quality into three categories (“Excellent,” “Good,” and “Poor”). Six health care-related datasets and four synthetic tabular data generation approaches have been chosen to conduct an analysis and evaluation to verify the utility of the proposed evaluation pipeline. Results. The synthetic tabular data generated with the four selected approaches has maintained resemblance, utility, and privacy for most datasets and synthetic tabular data generation approach combination. In several datasets, some approaches have outperformed others, while in other datasets, more than one approach has yielded the same performance. Conclusion. The results have shown that the proposed pipeline can effectively be used to evaluate and benchmark the synthetic tabular data generated by various synthetic tabular data generation approaches. Therefore, this pipeline can support the scientific community in selecting the most suitable synthetic tabular data generation approaches for their data and application of interest.en
dc.description.sponsorshipGobierno Vasco-Eusko Jaurlaritzaes
dc.language.isoengen
dc.publisherThiemeen
dc.rights© 2023 Thiemeen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectsynthetic tabular data generationen
dc.subjectsynthetic tabular data evaluationen
dc.subjectresemblance evaluationen
dc.subjectutility evaluationen
dc.subjectprivacy evaluationen
dc.subjectODS 3 Salud y bienestares
dc.titleSynthetic Tabular Data Evaluation in the Health Domain Covering Resemblance, Utility, and Privacy Dimensionsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceMethods of Information in Medicineen
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1055/s-0042-1760247en
local.relation.projectIDEmaitek Plus Actionen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2022-2025/IT1676-22/CAPV/Grupo de sistemas inteligentes para sistemas industriales/en
local.contributor.otherinstitutionhttps://ror.org/0023sah13en
local.contributor.otherinstitutionhttps://ror.org/01yp9g959en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International