Erregistro soila

dc.contributor.authorAizpurua Unanue, Jose Ignacio
dc.contributor.authorPenalba, Markel
dc.contributor.authorKirillova, Natalia
dc.contributor.otherLekube, Jon
dc.contributor.otherMarina, Dorleta
dc.date.accessioned2022-11-10T13:29:14Z
dc.date.available2022-11-10T13:29:14Z
dc.date.issued2022
dc.identifier.issn0029-8018en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=167850en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5828
dc.description.abstractThe reliability and energy production of wave power plants (WPPs) depend on sea-state conditions, operation efficiency and degradation of its constituent assets. Air turbines are key assets for the efficient and reliable operation of WPPs and ensuring their correct operation leads to enhance the efficiency of WPPs. However, the lack of run-to-failure data and scarce fault records hampers the development of predictive condition monitoring solutions. In this context, focusing on unsupervised health monitoring methods, this paper presents an air turbine conditional anomaly detection (CAD) approach with a practical case study tested and validated on the Mutriku wave power plant. In contrast to anomaly detection models, which model the health-state without taking into account the influence of the operating context, the proposed CAD approach learns the expected air turbine operation conditioned on specific sea-states information modelled through wave energy flux concepts. This is achieved through an ensemble of Gaussian Mixture models and the expectation–maximization algorithm. Results show that, the integration of sea-states in the anomaly detection learning process improves the discrimination capability of the CAD model compared with the anomaly detection model without sea-state information, reducing false positive events and improving the accuracy of the CAD model.en
dc.description.sponsorshipGobierno Vasco-Eusko Jaurlaritzaes
dc.description.sponsorshipGobierno de Españaes
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2022 Elsevieren
dc.subjectMarine Renewable Energy monitoringen
dc.subjectanomaly detectionen
dc.subjectPrognostics and health managementen
dc.subjectTurbineen
dc.subjectPower curve and monitoringen
dc.titleContext-informed conditional anomaly detection approach for wave power plants: The case of air turbinesen
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceOcean Engineeringen
local.contributor.groupTeoría de la señal y comunicacioneses
local.contributor.groupMecánica de fluidoses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.oceaneng.2022.111196en
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Elkartek 2021/KK-2021-00021/CAPV/Modelización del comportamiento térmico de los transformadores para aplicaciones fotovoltaicas/TRASMOIIen
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Convocatoria 2019. Plan Estatal de I+D+I 2017-2020. Subprograma Estatal de Formación y en el Subprograma Estatal de Incorporación, del Programa Estatal de Promoción del Talento y su Empleabilidad. Ayudas Juan de la Cierva-incorporación/IJC2019-039183-I/ES/en
local.embargo.enddate2024-06-30
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72en
local.contributor.otherinstitutionhttps://ror.org/01m7qnr31en
local.contributor.otherinstitutionBiscay Marine Energy Platformen
local.source.detailsVol. 253. Artículo 111196. June, 2022en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila