Erregistro soila

dc.rights.licenseAttribution 4.0 International*
dc.contributor.authorSoler Mallol, Daniel
dc.contributor.authorTelleria, Martin
dc.contributor.authorCUESTA ZABALAJAUREGUI, MIKEL
dc.contributor.authorARRAZOLA, PEDRO JOSE
dc.contributor.otherGarcía-Blanco, M. Belén
dc.contributor.otherEspinosa, Elixabete
dc.date.accessioned2022-10-04T11:59:56Z
dc.date.available2022-10-04T11:59:56Z
dc.date.issued2022
dc.identifier.issn2504-4494en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=168250en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5714
dc.description.abstractA known problem of additive manufactured parts is their poor surface quality, which influences product performance. There are different surface treatments to improve surface quality: blasting is commonly employed to improve mechanical properties and reduce surface roughness, and electropolishing to clean shot peened surfaces and improve the surface roughness. However, the final surface roughness is conditioned by multiple parameters related to these techniques. This paper presents a prediction model of surface roughness (Ra) using an Artificial Neural Network considering two parameters of the SLM manufacturing process and seven blasting and electropolishing processes. This model is proven to be in agreement with 429 experimental results. Moreover, this model is then used to find the optimal conditions to be applied during the blasting and the electropolishing in order to improve the surface roughness by roughly 60%.en
dc.description.sponsorshipGobierno de Españaes
dc.description.sponsorshipGobierno Vascoes
dc.language.isoengen
dc.publisherMDPIen
dc.rights© 2022 by the authors. Licensee MDPIen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectsurface roughnessen
dc.subjectadditive manufacturingen
dc.subjectSLMen
dc.subjectArtificial Neural Networksen
dc.subjectblastingen
dc.subjectelectropolishingen
dc.titlePrediction of Surface Roughness of SLM Built Parts after Finishing Processes Using an Artificial Neural Networken
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceJournal of Manufacturing and Materials Processingen
local.contributor.groupMecanizado de alto rendimientoes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.3390/jmmp6040082en
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Ayudas Cervera para Centros Tecnológicos CDTI 2019/CER-20191003/ES/Red de Excelencia en Tecnologías de funcionalización Superficial para Aplicaciones en Sectores de Alto Impacto Económico y Social/SURF-ERAen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Elkartek 2019/KK-2019-00077/CAPV/Superficies multifuncionales en la frontera del conocimiento/FRONTIERS Ven
local.rights.publicationfeeAPCen
local.rights.publicationfeeamount0 EURen
local.contributor.otherinstitutionhttps://ror.org/03vgz7r63es
local.source.detailsVol. 6. N. 4. Artículo 82. August, 2022en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

Attribution 4.0 International
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: Attribution 4.0 International