Share
Title
Surface Integrity Analysis when Machining Inconel 718 with Conventional and Cryogenic CoolingAuthor (from another institution)
Published Date
2016Publisher
ElsevierKeywords
CryogenicSurface Integrity
Inconel 718
Abstract
Cryogenic machining together with minimum quantity lubrication (MQL), is claimed to be a promising alternative to flood cooling in industrial applications since it avoids the use of large amounts of c ... [+]
Cryogenic machining together with minimum quantity lubrication (MQL), is claimed to be a promising alternative to flood cooling in industrial applications since it avoids the use of large amounts of cutting fluids and it improves the functional performance of machined components through its superior surface integrity characteristics. In this paper, the suitability of replacing conventional cutting fluids by liquid nitrogen cooling + MQL for finishing operations in industry will be discussed.
Turning operations have been carried out on Inconel 718, in finishing conditions similar to those utilized in industry for the machining of nickel-based superalloys. With both cooling/lubricating approaches, the coolant has been applied to the rake face of the tool. Tool wear and surface integrity in terms of surface roughness, microstructural damage and microhardness profile have been analysed. The results show that conventional cooling is the best option from both the machinability and the surface integrity point of view. [-]
Publisher’s version
http://dx.doi.org/10.1016/j.procir.2016.02.095ISSN
2212-8271Published at
Procedia CIRP Vol. 45. Pp. 67–70, 2016Document type
Article
Version
Published
Rights
© 2016 The AuthorsAccess
Open AccessCollections
- Articles - Engineering [478]
The following license files are associated with this item: