Simple record

dc.rights.licenseAttribution 4.0 International*
dc.contributor.authorUnamuno, Eneko
dc.contributor.authorBilbao Ortega, Aitor
dc.contributor.otherZubiaga Lazcano, Markel
dc.contributor.otherSánchez Ruiz, Alain
dc.contributor.otherOlea Oregi, Eneko
dc.contributor.otherArza Alonso, Joseba
dc.date.accessioned2020-10-26T14:24:46Z
dc.date.available2020-10-26T14:24:46Z
dc.date.issued2020
dc.identifier.issn1996-1073en
dc.identifier.otherhttps://doi.org/10.3390/en13174314en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/1865
dc.description.abstractIt is getting more common every day to install inverters that o er several grid support services in parallel. As these services are provided, a simultaneous need arises to know the combined limit of the inverter for those services. In the present paper, operational limits are addressed based on a utility scale for a real inverter scenario with an energy storage system (ESS) (1.5 MW). The paper begins by explaining how active and reactive power limits are calculated, illustrating the PQ maps depending on the converter rated current and voltage. Then, the ellect of the negative sequence injection, the phase shift of compensated harmonics and the transformer de-rating are introduced step-by-step. Finally, inverter limits for active filter applications are summarized, to finally estimate active and reactive power limits along with the harmonic current injection for some example cases. The results show that while the phase shift of the injected negative sequence has a significant ellect in the available inverter current, this is not the case for the phase shift of injected harmonics. However, the amplitude of the injected negative sequence and harmonics will directly impact the power capabilities of the inverter and therefore, depending on the grid-side voltage, it might be interesting to design an output transformer with a different de-rating factor to increase the power capabilities.es
dc.description.sponsorshipGobierno de Españaes
dc.language.isoengen
dc.publisherMDPI AGen
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerlanden
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectESSen
dc.subjectgrid integrationen
dc.subjectpower qualityen
dc.subjectSTATCOMen
dc.subjectactive power filteren
dc.titlePower Capability Boundaries for an Inverter Providing Multiple Grid Support Servicesen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceEnergiesen
local.contributor.groupSistemas electrónicos de potencia aplicados al control de la energía eléctricaes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.3390/en13174314en
local.relation.projectIDGE/Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTC-2017-26091-3/Grid Ancillary Services Autonomous Converter/GASACen
local.rights.publicationfeeAPCen
local.rights.publicationfeeamount1692 EUR (1800 CHF)en
local.contributor.otherinstitutionhttps://ror.org/002xeeh02es
local.contributor.otherinstitutionhttps://ror.org/002xeeh02es
local.source.detailsVol. 13. N. 17. N. artículo 4314, 2020en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Simple record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International