Registro sencillo

dc.rights.license*
dc.contributor.advisorZurutuza Ortega, Urko
dc.contributor.advisorZugasti Uriguen, Ekhi
dc.contributor.authorFernández Anakabe, Javier
dc.date.accessioned2020-07-06T09:10:41Z
dc.date.available2020-07-06T09:10:41Z
dc.date.issued2019
dc.date.submitted2020-02-28
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=159207en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/1771
dc.description.abstractPredictive Maintenance is the maintenance methodology that provides the best performance to industrial organisations in terms of time, equipment effectiveness and economic savings. Thanks to the recent advances in technology, capturing process data from machines and sensors attached to them is no longer a challenging task, and can be used to perform complex analyses to help with maintenance requirements. On the other hand, knowledge of domain experts can be combined with information extracted from the machines’ assets to provide a better understanding of the underlying phenomena. This thesis proposes a methodology to assess the different requirements in relation to Predictive Maintenance. These are (i) Anomaly Detection (AD), (ii) Root Cause Analysis (RCA) and (iii) estimation of Remaining Useful Life (RUL). Multiple machine learning techniques and algorithms can be found in the literature to carry out the calculation of these requirements. In this thesis, the Attribute Oriented Induction (AOI) algorithm has been adopted and adapted to the Predictive Maintenance methodology needs. AOI has the capability of performing RCA, but also possibility to be used as an AD system. With the purpose of performing Predictive Maintenance, a variant, Repetitive Weighted Attribute Oriented Induction (ReWAOI ), has been proposed. ReWAOI has the ability to combine information extracted from the machine with the knowledge of experts in the field to describe its behaviour, and derive the Predictive Maintenance requirements. Through the use of ReWAOI, one-dimensional quantification function from multidimensional data can be obtained. This function is correlated with the evolution of the machine’s wear over time, and thus, the estimation of AD and RUL has been accomplished. In addition, the ReWAOI helps in the description of failure root causes. The proposed contributions of the thesis have been validated in different scenarios, both emulated but also real industrial case studies.en
dc.description.abstractEnpresei errendimendu hoberena eskaintzen dien mantentze metodologia Mantentze Prediktiboa da, denbora, ekipamenduen eraginkortasun, eta ekonomia alorretan. Azken urteetan eman diren teknologia aurrerapenei esker, makina eta sensoreetatiko datuen eskuraketa jada ez da erronka, eta manentenimendurako errekerimenduak betetzen laguntzeko analisi konplexuak egiteko erabili daitezke. Bestalde, alorreko jakintsuen ezagutza makinetatik eskuratzen den informazioarekin bateratu daiteke, gertakarien gaineko ulermena hobea izan dadin. Tesi honetan metodologia berri bat proposatzen da, Mantentze Prediktiboarekin lotura duten errekerimenduak betearazten dituena. Ondorengoak dira: (i) Anomalien Detekzioa (AD), (ii) Erro-Kausaren Analisia (RCA), eta (iii) Gainontzeko Bizitza Erabilgarriaren (RUL) estimazioa. Errekerimendu hauen kalkulua burutzeko, ikasketa automatikoko hainbat algoritmo aurkitu daitezke literaturan. Tesi honetan Attribute Oriented Induction (AOI) algoritmoa erabili eta egokitu da Mantentze Prediktiboaren beharretara. AOI-k RCA estimatzeko ahalmena dauka, baina AD kalkulatzeko erabilia izan daiteke baita ere. Mantentze Prediktiboa aplikatzeko helburuarekin, AOI-rentzat aldaera bat proposatu da: Repetitive Weighted Attribute Oriented Induction (ReWAOI ). ReWAOI-k alorreko jakintsuen ezagutza eta makinetatik eskuratutako informazioa bateratzeko ahalmena dauka, makinen portaera deskribatu ahal izateko, eta horrela, Mantentze Prediktiboaren errekerimenduak betetzeko. ReWAOI-ren erabileraren ondorioz, dimentsio bakarreko kuantifikazio funtzioa eskuratu daiteke hainbat dimentsiotako datuetatik. Funztio hau denboran zehar makinak duen higadurarekin erlazionatuta dago, eta beraz, AD eta RUL-aren estimazioak burutu daitezke. Horretaz gain, ReWAOI-k hutsegiteen erro-kausaren deskribapenak eskaintzeko ahalmena dauka. Tesian proposatutako kontribuzioak hainbat erabilpen kasutan balioztatu dira, batzuk emulatuak, eta beste batzuk industria alorreko kasu errealak izanik.eu
dc.description.abstractEl Mantenimiento Predictivo es la metodología de mantenimiento que mejor rendimiento aporta a las organizaciones industriales en cuestiones de tiempo, eficiencia del equipamiento, y rendimiento económico. Gracias a los recientes avances en tecnología, la captura de datos de proceso de máquinas y sensores ya no es un reto, y puede utilizarse para realizar complejos análisis que ayuden con el cumplimiento de los requerimientos de mantenimiento. Por otro lado, el conocimiento de expertos de dominio puede ser combinado con la información extraída de las máquinas para otorgar una mejor comprensión de los fenómenos ocurridos. Esta tesis propone una metodología que cumple con diferentes requerimientos establecidos para el Mantenimiento Predictivo. Estos son (i) la Detección de Anomalías (AD), el Análisis de la Causa-Raíz (RCA) y (iii) la estimación de la Vida Útil Remanente. Pueden encontrarse múltiples técnicas y algoritmos de aprendizaje automático en la literatura para llevar a cabo el cálculo de estos requerimientos. En esta tesis, el algoritmo Attribute Oriented Induction (AOI) ha sido seleccionado y adaptado a las necesidades que establece el Mantenimiento Predictivo. AOI tiene la capacidad de estimar el RCA, pero puede usarse, también, para el cálculo de la AD. Con el propósito de aplicar Mantenimiento Predictivo, se ha propuesto una variante del algoritmo, denominada Repetitive Weighted Attribute Oriented Induction (ReWAOI ). ReWAOI tiene la capacidad de combinar información extraída de la máquina y conocimiento de expertos de área para describir su comportamiento, y así, poder cumplir con los requerimientos del Mantenimiento Predictivo. Mediante el uso de ReWAOI, se puede obtener una función de cuantificación unidimensional, a partir de datos multidimensionales. Esta función está correlacionada con la evolución de la máquina en el tiempo, y por lo tanto, la estimación de AD y RUL puede ser realizada. Además, ReWAOI facilita la descripción de las causas-raíz de los fallos producidos. Las contribuciones propuestas en esta tesis han sido validadas en distintos escenarios, tanto en casos de uso industriales emulados como reales.es
dc.format.extent159 p.en
dc.language.isoengen
dc.publisherMondragon Unibertsitatea. Goi Eskola Politeknikoaen
dc.rights© Javier Fernández Anakabeen
dc.rights.uri*
dc.subjectODS 8 Trabajo decente y crecimiento económicoes
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.titleAn attribute oriented induction based methodology to aid in predictive maintenance: anomaly detection, root cause analysis and remaining useful lifeen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.degreePROGRAMA DE DOCTORADO EN INGENIERÍA MECÁNICA Y ENERGÍA ELÉCTRICAes
local.description.responsabilityPresidencia: Olatz Arbelaitz Gallego (UPV-EHU); Vocalía: Magda Ruiz Ordoñez (Universidad Politécnica de Cataluña); Vocalía: Rosario Maria Basagoiti Astigarraga (Mondragon Unibertsitatea); Vocalía: Urko Leturiondo Zubizarreta (IKERLAN, S. Coop.); Secretaría: Carlos Cernuda García (Mondragon Unibertsitatea)es
local.identifier.doihttps://doi.org/10.48764/q9wv-b909
local.contributor.otherinstitutionhttps://ror.org/000xsnr85es
local.contributor.otherinstitutionhttps://ror.org/03mb6wj31es
local.contributor.otherinstitutionhttps://ror.org/03hp1m080es
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_db06en


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo