Erregistro soila

dc.contributor.authorPeña Mangas, David
dc.contributor.authorCernuda, Carlos
dc.contributor.authorReguera-Bakhache, Daniel
dc.date.accessioned2025-03-26T08:05:08Z
dc.date.available2025-03-26T08:05:08Z
dc.date.issued2025
dc.identifier.issn1526-6125en
dc.identifier.otherhttps://doi.org/10.1016/j.jmapro.2025.03.031en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6924
dc.description.abstractViscosity plays a key role in glass container manufacturing, directly impacting product quality and consistency. To date, online measuring of this property during the glass manufacturing process has been both difficult and costly. This study proposes and validates a data-driven approach to develop a soft sensor for measuring glass viscosity. This method employs data on the height of the rotating tube at the forehearth outlet, along with the corresponding glass temperatures. To validate the approach, viscosity estimates are applied to predict glass gob length. Analysis of over 70 production days across various operations demonstrates high predictive accuracy on a per-job basis, with and MSE values consistently above 0.80 and below 1 millimeters, respectively, and reaching over 0.95 for certain jobs. Here, job refers to the continuous production of a single type of container on the production line. Additionally, an aggregate model across all data achieves a predictive accuracy of MSE = 3.80 millimeters. The proposed methodology offers a reliable means to monitor and control glass viscosity, enhancing production efficiency and product quality in the glass container industry.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2025 The Society of Manufacturing Engineersen
dc.subjectGlass viscosityen
dc.subjectGlass containeren
dc.subjectSoft sensoren
dc.subjectTube heighten
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.subjectODS 12 Producción y consumo responsableses
dc.titleData-driven glass viscosity soft sensor development and validation in a glass container manufacturing lineen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceJournal of Manufacturing Processesen
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedfalseen
local.description.publicationfirstpage1060en
local.description.publicationlastpage1070en
local.identifier.doihttps://doi.org/10.1016/j.jmapro.2025.03.031en
local.source.detailsVol. 141. May, 2025en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bcceen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.fundingStreamIkertalde Convocatoria 2022-2025en
oaire.fundingStreamPrograma Bikaintek 2023en
oaire.awardNumberIT1676-22en
oaire.awardNumber019-B2-2023en
oaire.awardTitleGrupo de sistemas inteligentes para sistemas industriales (IKERTALDE 2022-2025)en
oaire.awardTitle(BIKAINTEK)en
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila