Título
MagNet challenge for data-driven power magnetics modelingAutor-a (de otra institución)
Grupo de investigación
Sistemas electrónicos de potencia aplicados al control de la energía eléctricaVersión
Postprint
Derechos
© 2024 IEEEAcceso
Acceso abiertoVersión del editor
https://doi.org/10.1109/OJPEL.2024.3469916Publicado en
IEEE Open Journal of Power Electronics Editor
IEEEPalabras clave
open source software
Data-driven methods
Machine learning
Artificial Intelligence ... [+]
Data-driven methods
Machine learning
Artificial Intelligence ... [+]
open source software
Data-driven methods
Machine learning
Artificial Intelligence
Power magnetics
Power ferrites
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
ODS 12 Producción y consumo responsables [-]
Data-driven methods
Machine learning
Artificial Intelligence
Power magnetics
Power ferrites
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
ODS 12 Producción y consumo responsables [-]
Materia (Tesauro UNESCO)
Inteligencia artificialClasificación UNESCO
Tecnología de los ordenadoresResumen
This paper summarizes the main results and contributions of the MagNet Challenge 2023, an open-source research initiative for data-driven modeling of power magnetic materials. The MagNet Challenge has ... [+]
This paper summarizes the main results and contributions of the MagNet Challenge 2023, an open-source research initiative for data-driven modeling of power magnetic materials. The MagNet Challenge has (1) advanced the stateof-the-art in power magnetics modeling; (2) set up examples for fostering an open-source and transparent research community; (3) developed useful guidelines and practical rules for conducting data-driven research in power electronics; and (4) provided a fair performance benchmark leading to insights on the most promising future research directions. The competition yielded a collection of publicly disclosed software algorithms and tools designed to capture the distinct loss characteristics of power magnetic materials, which are mostly open-sourced. We have attempted to bridge power electronics domain knowledge with state-of-the-art advancements in artificial intelligence, machine learning, pattern recognition, and signal processing. The MagNet Challenge has greatly improved the accuracy and reduced the size of data-driven power magnetic material models. The models and tools created for various materials were meticulously documented and shared within the broader power electronics community. [-]
Colecciones
- Artículos - Ingeniería [683]
El ítem tiene asociados los siguientes ficheros de licencia: