dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.contributor.author | Abu-Dakka, Fares J. | |
dc.contributor.other | Hu, Yingbai | |
dc.contributor.other | Chen, Fei | |
dc.contributor.other | Luo, Xiao | |
dc.contributor.other | Li, Zheng | |
dc.contributor.other | Knoll, Alois | |
dc.contributor.other | Ding, Weiping | |
dc.date.accessioned | 2024-04-18T08:51:30Z | |
dc.date.available | 2024-04-18T08:51:30Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 1872-6305 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=176472 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6358 | |
dc.description.abstract | Imitation Learning (IL), also referred to as Learning from Demonstration (LfD), holds significant promise for capturing expert motor skills through efficient imitation, facilitating adept navigation of complex scenarios. A persistent challenge in IL lies in extending generalization from historical demonstrations, enabling the acquisition of new skills without re-teaching. Dynamical system-based IL (DSIL) emerges as a significant subset of IL methodologies, offering the ability to learn trajectories via movement primitives and policy learning based on experiential abstraction. This paper emphasizes the fusion of theoretical paradigms, integrating control theory principles inherent in dynamical systems into IL. This integration notably enhances robustness, adaptability, and convergence in the face of novel scenarios. This survey aims to present a comprehensive overview of DSIL methods, spanning from classical approaches to recent advanced approaches. We categorize DSIL into autonomous dynamical systems and non-autonomous dynamical systems, surveying traditional IL methods with low-dimensional input and advanced deep IL methods with high-dimensional input. Additionally, we present and analyze three main stability methods for IL: Lyapunov stability, contraction theory, and diffeomorphism mapping. Our exploration also extends to popular policy improvement methods for DSIL, encompassing reinforcement learning, deep reinforcement learning, and evolutionary strategies. The primary objective is to expedite readers’ comprehension of dynamical systems’ foundational aspects and capabilities, helping identify practical scenarios and charting potential future directions. By offering insights into the strengths and limitations of dynamical system methods, we aim to foster a deeper understanding among readers. Furthermore, we outline potential extensions and enhancements within the realm of dynamical systems, outlining avenues for further exploration. | en |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.rights | © 2024 Elsevier | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Imitation learning | en |
dc.subject | Dynamical system | en |
dc.subject | Fusion of theoretical paradigms | en |
dc.subject | Stability | en |
dc.subject | Policy exploration | en |
dc.title | Fusion dynamical systems with machine learning in imitation learning: A comprehensive overview | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_f1cf | en |
dcterms.source | Information Fusion | en |
local.contributor.group | Robótica y automatización | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.1016/j.inffus.2024.102379 | en |
local.embargo.enddate | 2026-08-31 | |
local.contributor.otherinstitution | https://ror.org/00t33hh48 | en |
local.contributor.otherinstitution | https://ror.org/02kkvpp62 | en |
local.contributor.otherinstitution | https://ror.org/02afcvw97 | en |
local.source.details | Vol. 108. N. art. 102379. August, 2024 | |
oaire.format.mimetype | application/pdf | en |
oaire.file | $DSPACE\assetstore | en |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |
oaire.funderName | National Natural Science Foundation of China | en |
oaire.funderName | Natural Science Foundation of Jiangsu Province | en |
oaire.funderName | Natural Science Key Foundation of Jiangsu Education Department | en |
oaire.funderName | Chinese University of Hong Kong | en |
oaire.funderName | Chinese University of Hong Kong | en |
oaire.funderName | Gobierno Vasco | en |
oaire.funderName | Gobierno Vasco | en |
oaire.funderIdentifier | https://ror.org/01h0zpd94 | |
oaire.funderIdentifier | Natural Science Foundation of Jiangsu Province | |
oaire.funderIdentifier | https://ror.org/059md9404 | |
oaire.funderIdentifier | https://ror.org/00t33hh48 | |
oaire.funderIdentifier | https://ror.org/00t33hh48 | |
oaire.funderIdentifier | https://ror.org/00pz2fp31 | |
oaire.funderIdentifier | https://ror.org/00pz2fp31 | |
oaire.fundingStream | Sin información | en |
oaire.fundingStream | Sin información | en |
oaire.fundingStream | Sin información | en |
oaire.fundingStream | Research Grant Council General Research fund | en |
oaire.fundingStream | The CUHK Strategic Seed Funding for Collaborative Research scheme 22/21 (SSFCRS) | en |
oaire.fundingStream | Elkartek 2022 | en |
oaire.fundingStream | Elkartek 2023 | en |
oaire.awardNumber | 61976120 | en |
oaire.awardNumber | BK20231337 | en |
oaire.awardNumber | 21KJA510004 | en |
oaire.awardNumber | 14202820 and 1421432 | en |
oaire.awardNumber | Sin información | en |
oaire.awardNumber | KK-2022-00024 | en |
oaire.awardNumber | KK-2023-00055 | en |
oaire.awardTitle | Knowledge Collaborative Reduction Theories and Approaches of Large-scale Electronic Medical Records for Cloud Computing | en |
oaire.awardTitle | Multi-modal big data knowledge discovery model and algorithm based on multi-granularity computing | en |
oaire.awardTitle | Research on multi-granularity knowledge discovery method and its key technologies of integrated optimization for multi-mode Big Data | en |
oaire.awardTitle | Sin información | en |
oaire.awardTitle | Sin información | en |
oaire.awardTitle | Producción Fluída y Resiliente para la Industria inteligente (PROFLOW) | en |
oaire.awardTitle | Tecnologías de Inteligencia Artificial para la percepción visual y háptica y la planificación y control de tareas de manipulación (HELDU) | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |
oaire.awardURI | Sin información | en |