dc.contributor.author | Mendikute, Julen | |
dc.contributor.author | Baskaran, Maider | |
dc.contributor.author | Llavori, Inigo | |
dc.contributor.author | Zugasti, Ekhi | |
dc.contributor.author | Aretxabaleta, Laurentzi | |
dc.contributor.author | Aurrekoetxea, Jon | |
dc.date.accessioned | 2024-02-02T08:53:11Z | |
dc.date.available | 2024-02-02T08:53:11Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 1359-8368 | |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=173001 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/6215 | |
dc.description.abstract | The main objective of the present paper is to demonstrate the feasibility of machine-learning-based surrogate models for predicting low-velocity impact behaviour considering void content and location generated during the resin transfer moulding process. Generating reliable experimental datasets for training those models is almost impossible, therefore an adapted finite element model was implemented providing reliable results to generate the synthetic datasets. The optimum hyperparameter combination for training the Random Forest model was found based on the grid search technique. The accuracy of the classification, single-output regression and multi-output regression models was sufficient. It was concluded that the multi-output regression model, which predicts the force-time, displacement-time, and energy-time curves, provides the best information, and is sufficiently accurate (R2 > 0.995) and fast (5 s per sample) as an online structural performance monitoring tool. | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.rights | © 2023 Elsevier | |
dc.subject | Polymer-matrix composites (PMCs) | |
dc.subject | Impact behaviour | |
dc.subject | Surrogate model | |
dc.subject | Resin transfer moulding (RTM) | |
dc.title | Predicting the effect of voids generated during RTM on the low-velocity impact behaviour by machine learning-based surrogate models | |
dcterms.accessRights | http://purl.org/coar/access_right/c_f1cf | |
dcterms.source | Composites Part B: Engineering | |
local.contributor.group | Tecnología de plásticos y compuestos | |
local.description.peerreviewed | true | |
local.identifier.doi | https://doi.org/10.1016/j.compositesb.2023.110790 | |
local.embargo.enddate | 2143-12-31 | |
local.source.details | Vol. 260. N. art. 110790 | |
oaire.format.mimetype | application/pdf | |
oaire.file | $DSPACE\assetstore | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
oaire.funderName | Eusko Jaurlaritza = Gobierno Vasco | |
oaire.funderName | Eusko Jaurlaritza = Gobierno Vasco | |
oaire.funderName | Eusko Jaurlaritza = Gobierno Vasco | |
oaire.funderIdentifier | https://ror.org/00pz2fp31 http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | |
oaire.funderIdentifier | https://ror.org/00pz2fp31 http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | |
oaire.funderIdentifier | https://ror.org/00pz2fp31 http://data.crossref.org/fundingdata/funder/10.13039/501100003086 | |
oaire.fundingStream | Programa predoctoral de formación del personal investigador no doctor 2018-2019 | |
oaire.fundingStream | Ikertalde Convocatoria 2022-2025 | |
oaire.fundingStream | Elkartek 2018 | |
oaire.awardNumber | PRE_2018_1_0338 | |
oaire.awardNumber | IT1613-22 | |
oaire.awardNumber | KK-2017-00062 | |
oaire.awardTitle | Sin información | |
oaire.awardTitle | Fabricación avanzada de composites | |
oaire.awardTitle | Composites para automoción fabricados mediante RTM adaptada a filosofía Industry 4.0 (RTM4.0) | |
oaire.awardURI | Sin información | |
oaire.awardURI | Sin información | |
oaire.awardURI | Sin información | |