Erregistro soila

dc.contributor.authorAizpurua Unanue, Jose Ignacio
dc.contributor.otherKnutsen, Knut Erik
dc.contributor.otherHeimdal, Markus
dc.contributor.otherVanem, Erik
dc.date.accessioned2023-03-28T17:55:34Z
dc.date.available2023-03-28T17:55:34Z
dc.date.issued2023
dc.identifier.issn1873-5258en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=172006en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6065
dc.description.abstractIn the transition towards more sustainable ships, electric motors (EM) are being used in ship propulsion systems to reduce emissions and increase efficiency. The safe operation of ships is crucial, and prognostics and health management applications have emerged as effective solutions to transit towards monitored reliable systems. In this context, this paper presents a probabilistic EM prognostics model integrating data-driven operational models and physics-informed degradation models. Firstly, motor torque and winding temperature are estimated through connected machine learning models, which are based on operational and meteorological data. Operational and meteorological variables drive the EM degradation model and enable the analysis of EM degradation under different operational and environmental conditions. Subsequently, EM remaining useful life (RUL) is predicted within a probabilistic Monte-Carlo approach combining the thermal-stress model along with the associated uncertainties. The methodology is tested on a real case study of the OV Ryvingen vessel, with collected data during voyages along the Norwegian coast. Results confirm the validity of the designed RUL model showing that, under normal operation conditions, the degradation is mild, and the temperature measurement errors are important for RUL estimation.en
dc.description.sponsorshipGobierno de Españaes
dc.description.sponsorshipGobierno Vasco-Eusko Jaurlaritzaes
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2023 Elsevieren
dc.subjectPrognosticsen
dc.subjectDegradationen
dc.subjectElectric motoren
dc.subjectInsulationen
dc.subjectuncertaintyen
dc.subjectMachine learningen
dc.titleIntegrated machine learning and probabilistic degradation approach for vessel electric motor prognosticses
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceOcean Engineeringen
local.contributor.groupTeoría de la señal y comunicacioneses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.oceaneng.2023.114153en
local.relation.projectIDMIDAS project (grant number 282202)en
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Convocatoria 2019. Plan Estatal de I+D+I 2017-2020. Subprograma Estatal de Formación y en el Subprograma Estatal de Incorporación, del Programa Estatal de Promoción del Talento y su Empleabilidad. Ayudas Juan de la Cierva-incorporación/IJC2019-039183-I/ES/en
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Elkartek 2021/KK-2021-00021/CAPV/Modelización del comportamiento térmico de los transformadores para aplicaciones fotovoltaicas/TRASMOIIen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Elkartek 2022/KK-2022-00106/CAPV/Mecatrónica ultraprecisa, fiable y coordinada para la industria 4.0/MECAPRESen
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Ikertalde Convocatoria 2022-2023/IT1451-22/CAPV/en
local.embargo.enddate2025-05-31
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72en
local.contributor.otherinstitutionDNVen
local.contributor.otherinstitutionhttps://ror.org/006zzcw62en
local.contributor.otherinstitutionhttps://ror.org/01xtthb56en
local.source.detailsVol. 275. N. artículo 114153en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila