Title
X-ray Thermo-Diffraction Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6xmlui.dri2xhtml.METS-1.0.item-contributorOtherinstitution
https://ror.org/000xsnr85https://ror.org/02fv8hj62
Version
http://purl.org/coar/version/c_970fb48d4fbd8a85
Rights
© 2022 The AuthorsAccess
http://purl.org/coar/access_right/c_abf2Publisher’s version
https://doi.org/10.3390/ma15145056Published at
Materials Vol. 15. N. 14. July, 2022Publisher
MDPIKeywords
lightweight multicomponent alloys
X-ray thermo-diffraction
differential scanning calorimetry
Al–Zn ... [+]
X-ray thermo-diffraction
differential scanning calorimetry
Al–Zn ... [+]
lightweight multicomponent alloys
X-ray thermo-diffraction
differential scanning calorimetry
Al–Zn
Zn precipitation
Mg–Zn phases
strontium modification [-]
X-ray thermo-diffraction
differential scanning calorimetry
Al–Zn
Zn precipitation
Mg–Zn phases
strontium modification [-]
Abstract
Newly designed multicomponent light alloys are giving rise to non-conventional microstructures that need to be thoroughly studied before determining their potential applications. In this study, the no ... [+]
Newly designed multicomponent light alloys are giving rise to non-conventional microstructures that need to be thoroughly studied before determining their potential applications. In this study, the novel Al58Zn28Si8Mg6 alloy, previously studied with CALPHAD methods, was cast and heat-treated under several conditions. An analysis of the phase evolution was carried out with in situ X-ray diffraction supported by differential scanning calorimetry and electron microscopy. A total of eight phases were identified in the alloy in the temperature range from 30 to 380 °C: α-Al, α’-Al, Zn, Si, Mg2Si, MgZn2, Mg2Zn11, and SrZn13. Several thermal transitions below 360 °C were determined, and the natural precipitation of the Zn phase was confirmed after nine months. The study showed that the thermal history can strongly affect the presence of the MgZn2 and Mg2Zn11 phases. The combination of X-ray thermo-diffraction with CALPHAD methods, differential scanning calorimetry, and electron microscopy offered us a satisfactory understanding of the alloy behavior at different temperatures. [-]
xmlui.dri2xhtml.METS-1.0.item-sponsorship
Gobierno Vasco-Eusko Jaurlaritzaxmlui.dri2xhtml.METS-1.0.item-projectID
info:eu-repo/grantAgreement/GV/Elkartek 2020/KK-2020/00047/CAPV/Desarrollo de materiales cerámicos y metálicos de altas prestaciones para fabricación avanzada/CEMAPCollections
- Articles - Engineering [684]
The following license files are associated with this item: