dc.contributor.author | Aizpurua Unanue, Jose Ignacio | |
dc.contributor.author | Penalba, Markel | |
dc.contributor.author | Kirillova, Natalia | |
dc.contributor.other | Lekube, Jon | |
dc.contributor.other | Marina, Dorleta | |
dc.date.accessioned | 2022-11-10T13:29:14Z | |
dc.date.available | 2022-11-10T13:29:14Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0029-8018 | en |
dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=167850 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.11984/5828 | |
dc.description.abstract | The reliability and energy production of wave power plants (WPPs) depend on sea-state conditions, operation efficiency and degradation of its constituent assets. Air turbines are key assets for the efficient and reliable operation of WPPs and ensuring their correct operation leads to enhance the efficiency of WPPs. However, the lack of run-to-failure data and scarce fault records hampers the development of predictive condition monitoring solutions. In this context, focusing on unsupervised health monitoring methods, this paper presents an air turbine conditional anomaly detection (CAD) approach with a practical case study tested and validated on the Mutriku wave power plant. In contrast to anomaly detection models, which model the health-state without taking into account the influence of the operating context, the proposed CAD approach learns the expected air turbine operation conditioned on specific sea-states information modelled through wave energy flux concepts. This is achieved through an ensemble of Gaussian Mixture models and the expectation–maximization algorithm. Results show that, the integration of sea-states in the anomaly detection learning process improves the discrimination capability of the CAD model compared with the anomaly detection model without sea-state information, reducing false positive events and improving the accuracy of the CAD model. | en |
dc.description.sponsorship | Gobierno Vasco-Eusko Jaurlaritza | es |
dc.description.sponsorship | Gobierno de España | es |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.rights | © 2022 Elsevier | en |
dc.subject | Marine Renewable Energy monitoring | en |
dc.subject | anomaly detection | en |
dc.subject | Prognostics and health management | en |
dc.subject | Turbine | en |
dc.subject | Power curve and monitoring | en |
dc.title | Context-informed conditional anomaly detection approach for wave power plants: The case of air turbines | en |
dcterms.accessRights | http://purl.org/coar/access_right/c_f1cf | en |
dcterms.source | Ocean Engineering | en |
local.contributor.group | Teoría de la señal y comunicaciones | es |
local.contributor.group | Mecánica de fluidos | es |
local.description.peerreviewed | true | en |
local.identifier.doi | https://doi.org/10.1016/j.oceaneng.2022.111196 | en |
local.relation.projectID | info:eu-repo/grantAgreement/GV/Elkartek 2021/KK-2021-00021/CAPV/Modelización del comportamiento térmico de los transformadores para aplicaciones fotovoltaicas/TRASMOII | en |
local.relation.projectID | info:eu-repo/grantAgreement/GE/Convocatoria 2019. Plan Estatal de I+D+I 2017-2020. Subprograma Estatal de Formación y en el Subprograma Estatal de Incorporación, del Programa Estatal de Promoción del Talento y su Empleabilidad. Ayudas Juan de la Cierva-incorporación/IJC2019-039183-I/ES/ | en |
local.embargo.enddate | 2024-06-30 | |
local.contributor.otherinstitution | https://ror.org/01cc3fy72 | en |
local.contributor.otherinstitution | https://ror.org/01m7qnr31 | en |
local.contributor.otherinstitution | Biscay Marine Energy Platform | en |
local.source.details | Vol. 253. Artículo 111196. June, 2022 | en |
oaire.format.mimetype | application/pdf | |
oaire.file | $DSPACE\assetstore | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | en |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |