Registro sencillo

dc.rights.licenseAttribution 4.0 International*
dc.contributor.authorBernal, Daniel
dc.contributor.authorchamorro, xabier
dc.contributor.authorHurtado, Iñaki
dc.contributor.otherLópez-Galilea, Inmaculada
dc.contributor.otherBurger, David
dc.contributor.otherWeber, Sebastian
dc.contributor.otherMadariaga, Iñaki
dc.date.accessioned2022-11-10T10:40:54Z
dc.date.available2022-11-10T10:40:54Z
dc.date.issued2022
dc.identifier.issn1996-1944en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=168087en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5823
dc.description.abstractThe conventional processing route of TNM (Ti-Nb-Mo) alloys combines casting and Hot Isostatic Pressing (HIP) followed by forging and multiple heat treatments to establish optimum properties. This is a time-consuming and costly process. In this study we present an advanced alternative TNM alloy processing route combining HIP and heat treatments into a single process, which we refer to as IHT (integrated HIP heat treatment), applied to a modified TNM alloy with 1.5B. A Quintus HIP lab unit with a quenching module was used, achieving fast and controlled cooling, which differs from the slow cooling rates of conventional HIP units. A Ti-42.5Al-3.5Nb-1Mo-1.5B (at.%) was subjected to an integrated two HIP steps at 200 MPa, one at 1250 °C for 3 h and another at 1260 °C for 1 h, both under a protective Ar atmosphere and followed by cooling at 30 K/min down to room temperature. The results were compared against the Ti-43.5Al-3.5Nb-1Mo-0.8B (at.%) thermomechanically processed in a conventional way. Applying IHT processing to the 1.5B alloy does indeed achieve good creep strength, and the secondary creep rate of the IHT processed materials is similar to that of conventionally forged TNM alloys. Thus, the proposed advanced IHT processing route could manufacture more cost-effective TiAl components.en
dc.description.sponsorshipGobierno Vasco-Eusko Jaurlaritzaes
dc.language.isoengen
dc.publisherMDPIen
dc.rights© 2022 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjecttitanium aluminideen
dc.subjectintegrated hot isostatic pressing heat treatmenten
dc.subjectcreepen
dc.subjectinvestment castingen
dc.subjectchemical compositionen
dc.titleIntegration of Hot Isostatic Pressing and Heat Treatment for Advanced Modified gamma-TiAl TNM Alloysen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceMaterialsen
local.contributor.groupProcesos avanzados de conformación de materialeses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.3390/ma15124211en
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Programa de apoyo a la I+D Empresarial Hazitek 2017/ZE-2017-00029/CAPV/Turbinas de Alta velocidad: Desarrollo de tecnologías de fabricación Avanzada/TALDEAen
local.relation.projectIDDeutsche Forschungsgemeinschaft (DFG), Collaborative research center SFB/TR 103. Project A1 (DB), Project T4 (ILG).en
local.contributor.otherinstitutionhttps://ror.org/04tsk2644de
local.contributor.otherinstitutionIndustria de TurboPropulsores SAUes
local.source.detailsVol. 15. N. 12. Artículo 4211. June, 2022en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International