Registro sencillo

dc.rights.licenseAttribution-NonCommercial 4.0 International*
dc.contributor.authorZabala, Alaitz
dc.contributor.otherLafuente-Merchan, Markel
dc.contributor.otherRuiz-Alonso, Sandra
dc.contributor.otherGarcía Villén, Fátima
dc.contributor.otherOchoa de Retana, Ana M.
dc.contributor.otherGallego, Idoia
dc.contributor.otherSáenz-del-Burgo, Laura
dc.contributor.otherPedraz, José Luis
dc.date.accessioned2022-11-09T10:12:38Z
dc.date.available2022-11-09T10:12:38Z
dc.date.issued2022
dc.identifier.issn1616-5195en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=168455en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5812
dc.description.abstractBone tissue is usually damaged after big traumas, tumors, and increasing aging-related diseases such as osteoporosis and osteoarthritis. Current treatments are based on implanting grafts, which are shown to have several inconveniences. In this regard, tissue engineering through the 3D bioprinting technique has arisen to manufacture structures that would be a feasible therapeutic option for bone regenerative medicine. In this study, nanocellulose–alginate (NC–Alg)-based bioink is improved by adding two different inorganic components such as hydroxyapatite (HAP) and graphene oxide (GO). First, ink rheological properties and biocompatibility are evaluated as well as the influence of the sterilization process on them. Then, scaffolds are characterized. Finally, biological studies of embedded murine D1 mesenchymal stem cells engineered to secrete erythropoietin are performed. Results show that the addition of both HAP and GO prevents NC–Alg ink from viscosity lost in the sterilization process. However, GO is reduced due to short cycle autoclave sterilization, making it incompatible with this ink. In addition, HAP and GO have different influences on scaffold architecture and surface as well as in swelling capacity. Scaffolds mechanics, as well as cell viability and functionality, are promoted by both elements addition. Additionally, GO demonstrates an enhanced bone differentiation capacity.en
dc.description.sponsorshipGobierno Vasco-Eusko Jaurlaritzaes
dc.language.isoengen
dc.publisherWileyen
dc.rights© 2022 The Authorsen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject3D bioprintingen
dc.subjectbioinksen
dc.subjectboneen
dc.subjectgraphene oxideen
dc.subjecthydroxyapatiteen
dc.subjecttissue engineeringen
dc.title3D Bioprinted Hydroxyapatite or Graphene Oxide Containing Nanocellulose-Based Scaffolds for Bone Regenerationen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceMacromolecular Bioscienceen
local.contributor.groupTecnologías de superficieses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1002/mabi.202200236en
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Ayudas para apoyar las actividades de grupos de investigación del sistema universitario vasco Grupos Consolidados (EHU)/IT907-16/CAPV//en
local.relation.projectIDinfo:eu-repo/grantAgreement/GV/Programa predoctoral de formación del personal investigador no doctor 2021-2022/PRE_2021_2_0153/CAPV//en
local.contributor.otherinstitutionhttps://ror.org/000xsnr85es
local.source.details2200236. August, 2022en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo

Attribution-NonCommercial 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International