Registro sencillo

dc.contributor.authorAgirre, Julen
dc.contributor.authorMendiguren, Joseba
dc.contributor.authorGALDOS, Lander
dc.contributor.authorSáenz de Argandoña, Eneko
dc.date.accessioned2022-05-04T14:41:39Z
dc.date.available2022-05-04T14:41:39Z
dc.date.issued2018
dc.identifier.issn0167-6636en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=147922en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/5565
dc.description.abstractIn recent years, due to the introduction of higher resistance materials in the automotive sector, sheet metal-forming tool-makers have been forced to deal with more challenging process designs. Therefore, the optimisation of the manufacturing process has become a key factor in obtaining a part which fits the required tolerances, and the finite element method (FEM) is the most widely used technique to speed up that optimisation time. However, to obtain a numerical result as close as possible to those of industrial conditions, the FEM software inputs must be highly accurate. The present work is focused on the hardening extension of the currently available reduced-formability materials, as it is a key factor in the correct prediction of the stress state and hence, of the springback during a sheet metal-forming process. The objective in this work was the selection of the most appropriate hardening model to extend the flow curve beyond the necking limit for a wide variety of material families currently utilised in the industrial environment. To carry out that analysis, a digital image correlation (DIC) technique was utilised during conventional tensile tests to extend the experimental flow curves of the analysed materials. Commonly used hardening models were fitted to the experimental tensile flow curves with the aim of selecting the model that best predicts the hardening behaviour of each analysed material family. The results showed that the DIC technique was valid for the extension of the hardening curve of the analysed materials and for the final selection of the most suitable hardening model for each analysed material family.en
dc.description.sponsorshipGobierno de Españaes
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2018 Elsevier Ltd.en
dc.subjectHardening modelen
dc.subjectDICen
dc.subjectIsotropic hardeningen
dc.subjectMetal formingen
dc.titleHardening prediction of diverse materials using the Digital Image Correlation techniqueen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceMechanics of Materialsen
local.contributor.groupProcesos avanzados de conformación de materialeses
local.description.peerreviewedtrueen
local.description.publicationfirstpage71en
local.description.publicationlastpage79en
local.identifier.doihttps://doi.org/10.1016/j.mechmat.2018.05.007en
local.relation.projectIDinfo:eu-repo/grantAgreement/GE/Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTC-2015-3643-4/ES/Nueva generación de troqueles más estables y con vida útil prolongada para el conformado de aceros avanzados de alto límite elástico para automoción/HRDen
local.source.detailsVol. 124. Pp. 71-79. September, 2018en
oaire.format.mimetypeapplication/pdf
oaire.file$DSPACE\assetstore
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo